基于信息融合的风电机组关键部件状态识别  被引量:3

State Identification of Key Components of Wind Turbine Based on Information Fusion

在线阅读下载全文

作  者:苏连成[1] 郭高鑫 SU Liancheng;GUO Gaoxin(School of Electrical Engineering,Yanshan University,Qinhuangdao 066000,China)

机构地区:[1]燕山大学电气工程学院,河北秦皇岛066000

出  处:《信息与控制》2021年第3期337-342,349,共7页Information and Control

基  金:国防基础研究计划资助项目(JCKY2019407C002)。

摘  要:针对风电机组关键部件的运行状态识别问题,本文提出一种引入时间维度信息的降噪自编码器融合多个传感器信号进行关键部件运行状态识别的方法.首先通过训练学习SCADA(supervisory control and data acquisition)数据中各传感器信号之间相互关系以及时间维度上运行状态变化趋势,建立关键部件正常运行状态模型;然后将风电场实时采集数据输入模型,再根据模型输出残差的分布情况识别关键部件的运行状态.最后使用风电场中发电机和齿轮箱两种关键部件实际故障数据进行验证,结果表明融合时间维度上的状态变化趋势更准确的描述了关键部件运行状态,有效提高了关键部件运行状态识别的准确度.To identify the operational state of key components in the wind turbine,we propose a denoising autoencoder with time-dimension information for fusing the multiple sensor signals of these key components.Firstly,the relationship between the signals of each sensor in the SCADA data is learned and the change trend of the operational state in the time dimension is obtained to establish a normal model of the key components.Then,real-time data collected by the wind farm is input into the normal model,and the operational state of the key components are identified based on the distribution of the output residual of the normal model.Finally,we use actual fault data from the generator and gearbox in the wind farm for verification.The results show that obtaining the state change trend in the time dimension improves the ability to accurately describe the operational state of the key components,and the proposed method effectively improves the accuracy of the identification of the operational state of these key components.

关 键 词:风电机组 运行状态识别 信息融合 时窗降噪自编码器 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象