Short-term prediction of the influent quantity time series of wastewater treatment plant based on a chaos neural network model  

在线阅读下载全文

作  者:LI Xiaodong ZENG Guangming HUANG Guohe LI Jianbing JIANG Ru 

机构地区:[1]College of Environmental Science and Engineering,Hunan University,Changsha 410082,China

出  处:《Frontiers of Environmental Science & Engineering》2007年第3期334-338,共5页环境科学与工程前沿(英文)

基  金:The work was supported by the Natural Science Foundation of China for Distinguished Young Scholars(Grant Nos.50225926 and 50425927);the National High-Tech Research and Development(863)Program of China(Grant No.2004AA649370);the Teaching and Research Award Program for Excellent Youth Teachers in Higher Education Institu-tions of MOE,China(TRAPOYT)in 2000;the Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education of China(Grant No.20020532017).

摘  要:By predicting influent quantity,a wastewater treatment plant(WWTP)can be well controlled.The non-linear dynamic characteristic of WWTP influent quantity time series was analyzed,with the assumption that the series was predictable.Based on this,a short-term forecasting chaos neural network model of WWTP influent quantity was built by phase space reconstruction.Reasonable forecasting results were achieved using this method.

关 键 词:wastewater treatment plant(WWTP) influent quantity short-term forecasting time series chaos neural network model 

分 类 号:X70[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象