检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田亚军 高静怀[1,2] 王大兴 陈道雨[1,2] TIAN YaJun;GAO JingHuai;WANG DaXing;CHEN DaoYu(School of Information and Communications Engineering,Xi'an Jiaotong University,Xi'an 710049,China;National Engineering Laboratory for Offshore Oil Exploration,Xi'an 710049,China;Exploration and Development Research Institute of PetroChina Changqing Oilfield Company,Xi'an 710018,China;National Engineering Laboratory for Exploration and Development of Low-Permeability Oil and Gas Fields,Xi'an 710018,China)
机构地区:[1]西安交通大学信息与通信工程学院,西安710049 [2]海洋石油勘探国家工程实验室,西安710049 [3]中国石油长庆油田公司勘探开发研究院,西安710018 [4]低渗透油气田勘探开发国家工程实验室,西安710018
出 处:《地球物理学报》2021年第8期2780-2794,共15页Chinese Journal of Geophysics
基 金:国家重点研发计划重点项目(2018YFC0603501,2020YFA0713403,2020YFA0713400)资助.
摘 要:在储层预测工作中,储层弱反射信号淹没在强反射信号之中的情况非常常见,这不利于精确识别和描述储层结构.本文提出了一种基于深度神经网络的强反射剥离方法,用于辅助储层弱反射信号的检测工作.该方法在卷积模型的框架下将强反射预测问题分解为地震子波预测与强反射预测两个子优化问题,并采用AIDNN与U-Net两个深度神经网络分别求解.通过训练直接得到地震数据与强反射之间的映射关系,避免了经验性调参过程,计算速度快,适用于海量地震数据处理.模型数据和实际资料试算结果表明,本文方法能够预测并剥离地震数据中的强反射且保真保幅性好;在该方法的基础上进行的储层砂体展布预测工作取得了良好效果.In reservoir prediction,it is often encountered that the weak reflection signal is submerged in the strong reflection,which is disadvantageous to accurately identify and describe reservoir structure.In this study,we propose a method to remove the strong seismic reflection using the deep neural networks to help detect weak reflection signals of reservoirs.In the framework of the convolution model,the proposed method first decomposes the strong reflection prediction problem into two optimization sub-problems:seismic wavelet prediction and strong reflection prediction,which are solved by AIDNN and U-Net,respectively.The mapping relationship between seismic data and strong reflection can be established directly through training,which avoids the artificial empirical parameter adjustment,and is fast in the calculation and suitable for massive seismic data processing.Tests on synthetic and real data show that the proposed method can predict and remove strong seismic reflection with good amplitude preservation and fidelity.Base on this approach we predict the distribution of sand bodies in reservoirs and achieve good results.
分 类 号:P631[天文地球—地质矿产勘探]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222