EEMD-ARIMA在干旱预测中的应用——以新疆维吾尔自治区为例  被引量:3

Application of the EEMD-ARIMA Combined Model in Drought Prediction:A Case Study in Xinjiang Uygur Autonomous Region

在线阅读下载全文

作  者:许德合[1] 丁严 张棋 黄会平[1] XU De-he;DING Yan;ZHANG Qi;HUANG Hui-ping(North China University of Water Resources and Electric Power,Zhengzhou 450000,China)

机构地区:[1]华北水利水电大学,郑州450000

出  处:《中国农村水利水电》2021年第7期1-11,共11页China Rural Water and Hydropower

基  金:国家自然科学基金项目(51679089);2019年度河南省重点研发与推广专项(192102310257)。

摘  要:近年来,国内干旱灾害频发,影响了正常的农业生产和经济发展,因此精确预测干旱发生具有重要意义。基于1960-2019年新疆维吾尔自治区气象站点的逐日降水量数据,计算了1、3、6、9、12及24个月时间尺度的标准化降水指数(SPI),利用差分自回归移动平均模型(ARIMA)和集合经验模态分解(EEMD)-ARIMA组合模型,分别对多尺度的SPI进行预测,并通过均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R2)对预测结果进行评价。结果表明:EEMDARIMA组合模型的预测结果与新疆年鉴记录情况较为一致,能够用于对干旱进行预测;组合模型能够有效减少序列的非平稳性,相较单一模型能更好地预测SPI序列;EEMD-ARIMA组合模型在干旱预测中具有明显优势,在各时间尺度,组合模型预测精度均高于单一模型,能更准确地进行预测。In the context of global warming,drought becomes more and more frequent,causing negative impacts on agricultural and social activities.Based on the daily precipitation data of meteorological stations from 1960 to 2019 in Xinjiang Uygur Autonomous Region,this paper calculates the Standard Precipitation Index(SPI)in a timeframe of 1,3,6,9,12,24 months,then time series SPI at different temporal scales are predicted by ARIMA model and EEMD-ARIMA combined model.And the effectiveness of model is judged by the evaluation standard of RMSE,MAE,and R2.The main conclusions are as follows:the forecast results of the EEMD-ARIMA combined model in Xinjiang are consistent with Xinjiang yearbook.Therefore,the combined model can be used in the prediction of drought.Compared with ARIMA model,EEMD-ARIMA combined model can effectively reduce the non-stationary of series and match the SPI series better.The prediction accuracy of EEMD-ARIMA combined model is higher than that of ARIMA model at each time scale.The combined model has significant advantages in drought prediction.

关 键 词:干旱预测 ARIMA EEMD-ARIMA组合模型 SPI 

分 类 号:TV93[水利工程—水利水电工程] P338[天文地球—水文科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象