基于作物生长监测诊断仪的双季稻叶干重监测模型  被引量:2

Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus

在线阅读下载全文

作  者:李艳大[1] 曹中盛 舒时富[1] 孙滨峰 叶春[1] 黄俊宝[1] 朱艳[2] 田永超[2] LI Yan-Da;CAO Zhong-Sheng;SHU Shi-Fu;SUN Bin-Feng;YE Chun;HUANG Jun-Bao;ZHU Yan;TIAN Yong-Chao(Institute of Agricultural Engineering,Jiangxi Academy of Agricultural Sciences/Jiangxi Province Engineering Research Center of Intelligent Agricul-tural Machinery Equipment/Jiangxi Province Engineering Research Center of Information Technology in Agriculture,Nanchang 330200,Jiangxi,China;Nanjing Agricultural University/National Engineering and Technology Center for Information Agriculture,Nanjing 210095,Jiangsu,China)

机构地区:[1]江西省农业科学院农业工程研究所/江西省智能农机装备工程研究中心/江西省农业信息化工程技术研究中心,江西南昌330200 [2]南京农业大学/国家信息农业工程技术中心,江苏南京210095

出  处:《作物学报》2021年第10期2028-2035,共8页Acta Agronomica Sinica

基  金:国家重点研发计划项目(2016YFD0300608);“万人计划”青年拔尖人才项目;国家自然科学基金项目(31260293);江西省科技计划项目(20182BCB22015,20202BBFL63044,20192BBF60052);江西省“双千计划”项目;江西省“远航工程”项目资助。

摘  要:本文旨在验证作物生长监测诊断仪(crop growth monitoring and diagnosis apparatus, CGMD)监测双季稻长势指标的准确性,建立基于CGMD的双季稻叶干重监测模型。通过实施8个不同早、晚稻品种和4个施氮水平的小区试验,采用CGMD获取从分蘖期至灌浆期的冠层归一化植被指数(normalized difference vegetation index, NDVI)、差值植被指数(differential vegetation index,DVI)和比值植被指数(ratio vegetation index,RVI),同步采用高光谱仪(analytical spectral devices field-spec handheld 2, ASD FH2)获取冠层光谱反射率计算NDVI、DVI和RVI;分析2种光谱仪获取的植被指数间的相关关系,验证CGMD的测量精度,建立基于CGMD的叶干重监测模型,并用独立试验数据对模型进行检验。结果表明:早、晚稻叶干重随施氮水平的增加而增大,随生育进程的推进呈"低—高—低"动态变化趋势;CGMD与ASDFH2获取的NDVI、DVI和RVI呈极显著相关,相关系数(correlation coefficient,r)分别为0.9535~0.9972、0.9099~0.9948和0.9298~0.9926,表明2种光谱仪获取的植被指数具有高度的一致性, CGMD可替代价格昂贵的ASD FH2获取NDVI、DVI和RVI。CGMD获取的3个植被指数相比, RVI_(CGMD)与叶干重的相关性最高;基于RVI_(CGMD)的幂函数模型可准确地监测叶干重,模型建立的决定系数(determination coefficient,R~2)为0.8604~0.9216,模型检验的均方根误差(root mean square error, RMSE)、相对均方根误差(relative root mean square error, RRMSE)和r分别为12.97~17.87 g m~(–2)、4.88%~16.79%和0.9951~0.9992。与人工采样测定叶干重相比,利用CGMD可实时准确地获取双季稻叶干重动态变化,在双季稻长势精确诊断和丰产高效栽培中具有应用价值。The quantitative,convenient and non-destructive monitoring of leaf dry weight(LDW)is critical for precise management in double cropping rice production.The objective of this study is to verify the accuracy of crop growth monitoring and diagnosis apparatus(CGMD,a passive multi-spectral sensor containing 810 nm and 720 nm wavelengths)in monitoring growth index of double cropping rice,and establish the model for monitoring LDW of double cropping rice based on CGMD.Plot experiments were conducted in Jiangxi province in 2016 and 2017,including eight early and late rice cultivars and four nitrogen application rates.The normalized difference vegetation index(NDVI),differential vegetation index(DVI),and ratio vegetation index(RVI)were measured at tillering,jointing,booting,heading and filling stages with two spectrometers,CGMD and analytical spectral devices field-spec handheld 2(ASD FH2,a passive hyper-spectral sensor containing 325 nm to 1075 nm wavelengths).In order to verify the measurement precision of CGMD,the correlation relationship of vegetation indices between CGMD and ASD FH2 was analyzed.The LDW monitoring models of double cropping rice were established based on CGMD from an experimental dataset and then validated using an independent dataset involving different early and late rice cultivars and nitrogen application rates.The results indicated that the LDW of early and late rice were increased with the increase of nitrogen application rate at different growth stages,and exhibited"low–high–low"dynamic variation trend with early and late rice development progress.The NDVI,DVI,and RVI from CGMD and ASD FH2 were significantly correlation.The correlation coefficient(r)of NDVI,DVI,and RVI from CGMD and ASD FH2 were 0.9535–0.9972,0.9099–0.9948,and 0.9298–0.9926,respectively.This result indicated that there was highly consistent of vegetation indices from CGMD and ASD FH2,and the CGMD could replace expensive ASD FH2 to measure NDVI,DVI and RVI.Compared with the three vegetation indices based on CGMD,the cor

关 键 词:双季稻 叶干重 作物生长监测诊断仪 植被指数 监测模型 

分 类 号:S511.42[农业科学—作物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象