Novel energy dissipative method on the adaptive spatial discretization for the Allen–Cahn equation  

在线阅读下载全文

作  者:Jing-Wei Sun Xu Qian Hong Zhang Song-He Song 孙竟巍;钱旭;张弘;宋松和(Department of Mathematics,National University of Defense Technology,Changsha 410073,China;State Key Laboratory of High Performance Computing,National University of Defense Technology,Changsha 410073,China)

机构地区:[1]Department of Mathematics,National University of Defense Technology,Changsha 410073,China [2]State Key Laboratory of High Performance Computing,National University of Defense Technology,Changsha 410073,China

出  处:《Chinese Physics B》2021年第7期107-115,共9页中国物理B(英文版)

基  金:the National Key R&D Program of China(Grant No.2020YFA0709800);the National Natural Science Foundation of China(Grant Nos.11901577,11971481,12071481,and 12001539);the Natural Science Foundation of Hunan,China(Grant Nos.S2017JJQNJJ0764 and 2020JJ5652);the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(Grant No.2018MMAEZD004);the Basic Research Foundation of National Numerical Wind Tunnel Project,China(Grant No.NNW2018-ZT4A08);the Research Fund of National University of Defense Technology(Grant No.ZK19-37)。

摘  要:We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.

关 键 词:moving mesh energy dissipative average vector field method Allen–Cahn equation 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象