Non-Hermitian Kitaev chain with complex periodic and quasiperiodic potentials  

在线阅读下载全文

作  者:Xiang-Ping Jiang Yi Qiao Junpeng Cao 蒋相平;乔艺;曹俊鹏(Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China;Songshan Lake Materials Laboratory,Dongguan 523808,China;Peng Huanwu Center for Fundamental Theory,Xian 710127,China)

机构地区:[1]Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China [2]School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]Songshan Lake Materials Laboratory,Dongguan 523808,China [4]Peng Huanwu Center for Fundamental Theory,Xian 710127,China

出  处:《Chinese Physics B》2021年第7期439-443,共5页中国物理B(英文版)

基  金:the National Key R&D Program of China(Grant Nos.2016YFA0300600 and 2016YFA0302104);the National Natural Science Foundation of China(Grant Nos.12074410,12047502,11934015,11947301,and 11774397);the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33000000);the fellowship of China Postdoctoral Science Foundation(Grant No.2020M680724)。

摘  要:We study the topological properties of the one-dimensional non-Hermitian Kitaev model with complex either periodic or quasiperiodic potentials.We obtain the energy spectrum and the phase diagrams of the system by using the transfer matrix method as well as the topological invariant.The phase transition points are given analytically.The Majorana zero modes in the topological nontrivial regimes are obtained.Focusing on the quasiperiodic potential,we obtain the phase transition from the topological superconducting phase to the Anderson localization,which is accompanied with the Anderson localization–delocalization transition in this non-Hermitian system.We also find that the topological regime can be reduced by increasing the non-Hermiticity.

关 键 词:non-Hermitian physics Majorana zero modes transfer matrix 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象