检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yongjian LIU Stanisiaw MIGÓRSKI Van Thien NGUYEN Shengda ZHENG 刘永建;Stanislaw MIGÓRSKI;Van Thien NGUYEN;曾生达(Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China;College of Applied Mathematics,Chengdu University of Information Technology,Chengdu 610225,China;Jagiellonian University in Krakow,Chair of Optimization and Control,ul.Lojasiewicza 6,30348 Krakow,Poland;Departement of Mathematics,FPT University,Education Zone,Hoa Lac High Tech Park,Km29 Thang Long Highway,Thach That Ward,Hanoi,Vietnam)
机构地区:[1]Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China [2]College of Applied Mathematics,Chengdu University of Information Technology,Chengdu 610225,China [3]Jagiellonian University in Krakow,Chair of Optimization and Control,ul.Lojasiewicza 6,30348 Krakow,Poland [4]Departement of Mathematics,FPT University,Education Zone,Hoa Lac High Tech Park,Km29 Thang Long Highway,Thach That Ward,Hanoi,Vietnam
出 处:《Acta Mathematica Scientia》2021年第4期1151-1168,共18页数学物理学报(B辑英文版)
基 金:The project supported by the NNSF of China Grants Nos.12001478,12026255,12026256 and 11961074,H2020-MSCA-RISE-2018 Research;Innovation Staff Exchange Scheme Fellowship within the Project No.823731 CONMECH;National Science Center of Poland under Preludium Project No.2017/25/N/ST1/00611;It is also supported by the Startup Project of Doctor Scientific Research of Yulin Normal University No.G2020ZK07;Natural Science Foundation of Guangxi Province Grants Nos.2018GXNSFDA281028 and 2020GXNSFBA297137;the High Level Innovation Team Program from Guangxi Higher Education Institutions of China(Document no.[2018]35).
摘 要:The goal of this paper is to study a mathematical model of a nonlinear static frictional contact problem in elasticity with the mixed boundary conditions described by a combination of the Signorini unilateral frictionless contact condition,and nonmonotone multivalued contact,and friction laws of subdifferential form.First,under suitable assumptions,we deliver the weak formulation of the contact model,which is an elliptic system with Lagrange multipliers,and which consists of a hemivariational inequality and a variational inequality.Then,we prove the solvability of the contact problem.Finally,employing the notion of H-convergence of nonlinear elasticity tensors,we provide a result on the convergence of solutions under perturbations which appear in the elasticity operator,body forces,and surface tractions.
关 键 词:Mixed variational-hemi variational inequality H-convergence HOMOGENIZATION Clarke subgradient Lagrange multiplier elasticity operator
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171