EXISTENCE AND CONVERGENCE RESULTS FOR AN ELASTIC FRICTIONAL CONTACT PROBLEM WITH NONMONOTONE SUBDIFFERENTIAL BOUNDARY CONDITIONS  

在线阅读下载全文

作  者:Yongjian LIU Stanisiaw MIGÓRSKI Van Thien NGUYEN Shengda ZHENG 刘永建;Stanislaw MIGÓRSKI;Van Thien NGUYEN;曾生达(Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China;College of Applied Mathematics,Chengdu University of Information Technology,Chengdu 610225,China;Jagiellonian University in Krakow,Chair of Optimization and Control,ul.Lojasiewicza 6,30348 Krakow,Poland;Departement of Mathematics,FPT University,Education Zone,Hoa Lac High Tech Park,Km29 Thang Long Highway,Thach That Ward,Hanoi,Vietnam)

机构地区:[1]Guangxi Colleges and Universities Key Laboratory of Complex System Optimization and Big Data Processing,Yulin Normal University,Yulin 537000,China [2]College of Applied Mathematics,Chengdu University of Information Technology,Chengdu 610225,China [3]Jagiellonian University in Krakow,Chair of Optimization and Control,ul.Lojasiewicza 6,30348 Krakow,Poland [4]Departement of Mathematics,FPT University,Education Zone,Hoa Lac High Tech Park,Km29 Thang Long Highway,Thach That Ward,Hanoi,Vietnam

出  处:《Acta Mathematica Scientia》2021年第4期1151-1168,共18页数学物理学报(B辑英文版)

基  金:The project supported by the NNSF of China Grants Nos.12001478,12026255,12026256 and 11961074,H2020-MSCA-RISE-2018 Research;Innovation Staff Exchange Scheme Fellowship within the Project No.823731 CONMECH;National Science Center of Poland under Preludium Project No.2017/25/N/ST1/00611;It is also supported by the Startup Project of Doctor Scientific Research of Yulin Normal University No.G2020ZK07;Natural Science Foundation of Guangxi Province Grants Nos.2018GXNSFDA281028 and 2020GXNSFBA297137;the High Level Innovation Team Program from Guangxi Higher Education Institutions of China(Document no.[2018]35).

摘  要:The goal of this paper is to study a mathematical model of a nonlinear static frictional contact problem in elasticity with the mixed boundary conditions described by a combination of the Signorini unilateral frictionless contact condition,and nonmonotone multivalued contact,and friction laws of subdifferential form.First,under suitable assumptions,we deliver the weak formulation of the contact model,which is an elliptic system with Lagrange multipliers,and which consists of a hemivariational inequality and a variational inequality.Then,we prove the solvability of the contact problem.Finally,employing the notion of H-convergence of nonlinear elasticity tensors,we provide a result on the convergence of solutions under perturbations which appear in the elasticity operator,body forces,and surface tractions.

关 键 词:Mixed variational-hemi variational inequality H-convergence HOMOGENIZATION Clarke subgradient Lagrange multiplier elasticity operator 

分 类 号:O343.3[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象