检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Nemat NYAMORADI Abdolrahman RAZANI
机构地区:[1]Department of Mathematics,Razi University,Kermanshah,Iran [2]Department of Pure Mathematics,Faculty of Science,Imam Khomeini International University,34149-16818,Qazvin,Iran
出 处:《Acta Mathematica Scientia》2021年第4期1321-1332,共12页数学物理学报(B辑英文版)
摘 要:In this paper,we consider the following new Kirchhoff-type equations involving the fractional p-Laplacian and Hardy-Littlewood-Sobolev critical nonlinearity:(A+B∫∫_(R^(2N))|u(x)-u(y)|^(p)/|x-y|^(N+ps)dxdy)^(p-1)(-△)_(p)^(s)u+λV(x)|u|^(p-2)u=(∫_(R^(N))|U|^(P_(μ,S)^(*))/|x-y|^(μ)dy)|u|^(P_(μ,S)^(*))^(-2)u,x∈R^(N),where(-△)_(p)^(s)is the fractional p-Laplacian with 0<s<1<p,0<μ<N,N>ps,a,b>0,λ>0 is a parameter,V:R^(N)→R^(+)is a potential function,θ∈[1,2_(μ,s)^(*))and P_(μ,S)^(*)=pN-pμ/2/N-ps is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality.We get the existence of infinitely many solutions for the above problem by using the concentration compactness principle and Krasnoselskii’s genus theory.To the best of our knowledge,our result is new even in Choquard-Kirchhoff-type equations involving the p-Laplacian case.
关 键 词:Hardy-Littlewood-Sobolev inequality concentration-compactness principle variational method Fractional p-Laplacian operators multiple solutions
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.155.106