检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仇小杰 张宇飞 文彬鹤 QIU Xiaojie;ZHANG Yufei;WEN Binhe(Aero Engine Control System Institute,Aero Engine Corporation of China,Wuxi Jiangsu 214063,China)
机构地区:[1]中国航空发动机集团有限公司控制系统研究所,江苏无锡214063
出 处:《航空动力学报》2021年第6期1177-1187,共11页Journal of Aerospace Power
基 金:某民机科研项目。
摘 要:针对辅助动力装置(APU)控制系统传感器故障,提出了一种基于协方差优化集成极限学习网络(COSELM)的传感器智能解析余度方法。该方法能够根据在线序列预测误差的最小方差来自适应更新单个在线序列极限学习机的权重系数,发挥和权衡各个学习模型的优势,通过提高模型算法的稳定性和泛化性,改善传感器智能解析余度的精度。通过在某辅助动力装置控制系统传感器解析余度的验证表明,提出的COSELM方法可以解决传感器在发生偏置故障时的信号重构问题,重构误差不超过1%,适用于不同辅助动力装置个体,为其提供可靠的解析余度。For the sensors fault of auxiliary power unit(APU) control system, an intelligent analytical redundancy method of sensors was proposed based on online sequence extreme learning machine by improved covariance optimization algorithm. The covariance online sequence extreme learning machine(COSELM) algorithm method could adaptively update the weight coefficient of a single online sequence extreme learning machine according to the minimum variance of prediction error, exploit and weigh the advantages of each learning model. While increasing the stability and generalization of the model, the COSELM algorithm could improve the intelligent analytical redundancy accuracy of sensors. The simulation experiments using the sensors data of APU were carried out. The results indicated that the proposed COSELM method can solve the reconstruction problem when the sensors encountered the bias fault and the reconstruction error was less than 1%. Consequently, it is suitable for different engines to provide reliable analytical redundancy.
关 键 词:辅助动力装置(APU) 传感器故障 解析余度 在线序列 集成极限学习网络
分 类 号:V235[航空宇航科学与技术—航空宇航推进理论与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70