业绩承诺、补偿与并购估值泡沫抑制——基于两值期权并购估值区间模型研究  

Performance Commitment, Compensation and M&A Valuation Bubble Suppression——Research on M&A Valuation Interval Model Based on Binary Options

在线阅读下载全文

作  者:滕涛 黄庆波 刘梦茹 

机构地区:[1]大连海事大学航运经济与管理学院 [2]山东工商学院金融学院

出  处:《价格理论与实践》2020年第12期87-90,162,共5页Price:Theory & Practice

摘  要:企业并购重组旨在通过市场化手段进行资源配置,进而对企业的战略发展起到外延式增长的作用。并购交易中标的资产估值是多方博弈的焦点。目前的估值方法和业绩补偿机制,不仅缺少对被并购方并购后提升经营业绩的激励机制,反而存在对被并购方以高预期、高估值方式套取超额估值收益的激励机制。基于此,本文引入欧式期权思路,将估值区间模型设计为一种特殊的两值期权,在一定程度上降低并购交易中的信息不对称风险,更中性地反映各方利益,以促进达成并购谈判。本文通过2013-2019年20家医药上市公司并购数据,比较分析并购标的实际执行价格与估值区间模型之间的区别。研究结果表明:该模型能够更好地激励被并购方股东和管理层提升标的未来业绩,抑制并购估值泡沫。The purpose of enterprise mergers and acquisitions is to allocate resources through market-oriented means and then play an extended growth role in the strategic development of enterprises. The valuation of bid assets in M&A transactions is the focus of multi-party games. The current valuation method and performance compensation mechanism not only lack an incentive mechanism for the acquired party to improve its operating performance after the merger, but also an incentive mechanism for the acquired party to obtain excess valuation gains with high expectations and high valuations. Thus, this article introduces the European option idea to reduce the risk of information asymmetry in M&A transactions to a certain extent. To more neutrally reflect the interests of all parties to facilitate the conclusion of merger negotiations.Based on the 2013-2019 M&A data of 20 listed pharmaceutical companies, this paper compares and analyzes the difference between the actual execution price of the M&A target and the valuation interval model. The research results show that the model can better motivate the shareholders and management of the acquired party to improve the target’s future performance and curb M&A valuation bubbles.

关 键 词:企业并购 资产估值 业绩补偿 估值调整 混同均衡 

分 类 号:F426.72[经济管理—产业经济] F271F406.7

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象