Understanding the metal-to-insulator transition in La_(1−x)Sr_(x)CoO_(3−δ) and its applications for neuromorphic computing  被引量:1

在线阅读下载全文

作  者:Shenli Zhang Giulia Galli 

机构地区:[1]Pritzker School of Molecular Engineering,The University of Chicago,Chicago,IL,USA [2]Argonne National Laboratory,Argonne,IL,USA [3]Department of Chemistry,The University of Chicago,Chicago,IL,USA

出  处:《npj Computational Materials》2020年第1期261-269,共9页计算材料学(英文)

基  金:This research was conducted as part of the Quantum Materials for Energy Efficient Neuromorphic Computing,an Energy Frontier Research Center funded by the US Department of Energy,Office of Science,Basic Energy Sciences under award DESC0019273.

摘  要:Transition metal oxides that exhibit a metal-to-insulator transition(MIT)as a function of oxygen vacancy concentration are promising systems to realize energy-efficient platforms for neuromorphic computing.However,the current lack of understanding of the microscopic mechanism driving the MIT hinders the realization of effective and stable devices.Here we investigate defective cobaltites and we unravel the structural,electronic,and magnetic changes responsible for the MIT when oxygen vacancies are introduced in the material.We show that,contrary to accepted views,cooperative structural distortions instead of local bonding changes are responsible for the MIT,and we describe the subtle interdependence of structural and magnetic transitions.Finally,we present a model,based on first principles,to predict the required electric bias to drive the transition,showing good agreement with available measurements and providing a paradigm to establish design rules for low-energy cost devices.

关 键 词:TRANSITION INSULATOR hinder 

分 类 号:TG14[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象