Predominance of non-adiabatic effects in zero-point renormalization of the electronic band gap  被引量:1

在线阅读下载全文

作  者:Anna Miglio Véronique Brousseau-Couture Emile Godbout Gabriel Antonius Yang-Hao Chan Steven G.Louie Michel Côté Matteo Giantomassi Xavier Gonze 

机构地区:[1]Institute of Condensed Matter and Nanosciences,UCLouvain,B-1348 Louvain-la-Neuve,Belgium [2]Département de Physique et Regroupement Québécois sur les Matériaux de Pointe,Universitéde Montreal,C.P.6128,Succursale Centre-Ville,Montréal H3C 3J7,Canada [3]Department of Physics,University of California at Berkeley,Berkeley,CA 94720,USA [4]Materials Sciences Division,Lawrence Berkeley National Laboratory,Berkeley,CA 94720,USA [5]Département de Chimie,Biochimie et Physique,Institut de recherche sur l’hydrogène,Universitédu QuébecàTrois-Rivières,Trois-Rivières G8Z 4M3,Canada [6]Skolkovo Institute of Science and Technology,Skolkovo Innovation Center,Nobel St.3,Moscow 143026,Russia

出  处:《npj Computational Materials》2020年第1期297-304,共8页计算材料学(英文)

基  金:This work has been supported by the Fonds de la Recherche Scientifique(FRS-FNRS Belgium)through the PdR Grant No.T.0238.13-AIXPHO;the PdR Grant No.T.0103.19-ALPS;the Fonds de Recherche du Québec Nature et Technologie(FRQ-NT);the Natural Sciences and Engineering Research Council of Canada(NSERC)under grants RGPIN-2016-06666;Computational resources have been provided by the supercomputing facilities of the Universitécatholique de Louvain(CISM/UCL);the Consortium des Equipements de Calcul Intensif en Fédération Wallonie Bruxelles(CECI)funded by the FRS-FNRS under Grant No.2.5020.11;the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles,infrastructure funded by the Walloon Region under the grant agreement No.1117545;as well as the Canadian Foundation for Innovation,the Ministère de l’Éducation des Loisirs et du Sport(Québec),Calcul Québec,and Compute Canada.This work was supported by the Center for Computational Study of Excited-State Phenomena in Energy Materials(C2SEPEM)at the Lawrence Berkeley National Laboratory,which is funded by the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division under Contract No.DE-AC02-05CH11231;as part of the Computational Materials Sciences Program(advanced algorithms/codes)and by the National Science Foundation under grant DMR-1926004(basic theory and formalism);This research used resources of the National Energy Research Scientific Computing Center(NERSC),a DOE Office of Science User Facility supported by the Office of Science of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231.

摘  要:Electronic and optical properties of materials are affected by atomic motion through the electron–phonon interaction:not only band gaps change with temperature,but even at absolute zero temperature,zero-point motion causes band-gap renormalization.We present a large-scale first-principles evaluation of the zero-point renormalization of band edges beyond the adiabatic approximation.For materials with light elements,the band gap renormalization is often larger than 0.3 eV,and up to 0.7 eV.This effect cannot be ignored if accurate band gaps are sought.For infrared-active materials,global agreement with available experimental data is obtained only when non-adiabatic effects are taken into account.They even dominate zero-point renormalization for many materials,as shown by a generalized Fröhlich model that includes multiple phonon branches,anisotropic and degenerate electronic extrema,whose range of validity is established by comparison with first-principles results.

关 键 词:ADIABATIC RENORMALIZATION PHONON 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象