检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Martina Barbiero Stefania Castelletto Xiaosong Gan Min Gu
机构地区:[1]Laboratory of Artificial-Intelligence Nanophotonics,School of Science,RMIT University,Melbourne,Victoria 3001,Australia [2]School of Engineering,RMIT University,Melbourne,Victoria 3000,Australia [3]Center for Micro-Photonics,Faculty of Science,Engineering and Technology,Swinburne University of Technology,PO Box 218,Hawthorn,Victoria 3122,Australia
出 处:《Light(Science & Applications)》2017年第1期417-423,共7页光(科学与应用)(英文版)
基 金:the Australian Research Council Laureate Fellowship project(FL100100099).
摘 要:Due to their exceptional optical and magnetic properties,negatively charged nitrogen-vacancy(NV−)centers in nanodiamonds(NDs)have been identified as an indispensable tool for imaging,sensing and quantum bit manipulation.The investigation of the emission behaviors of single NV−centers at the nanoscale is of paramount importance and underpins their use in applications ranging from quantum computation to super-resolution imaging.Here,we report on a spin-manipulated nanoscopy method for nanoscale resolutions of the collectively blinking NV−centers confined within the diffraction-limited region.Using wide-field localization microscopy combined with nanoscale spin manipulation and the assistance of a microwave source tuned to the optically detected magnetic resonance(ODMR)frequency,we discovered that two collectively blinking NV−centers can be resolved.Furthermore,when the collective emitters possess the same ground state spin transition frequency,the proposed method allows the resolving of each single NV−center via an external magnetic field used to split the resonant dips.In spin manipulation,the three-level blinking dynamics provide the means to resolve two NV−centers separated by distances of 23 nm.The method presented here offers a new platform for studying and imaging spin-related quantum interactions at the nanoscale with superresolution techniques.
关 键 词:NANODIAMONDS nanoscale microscopy nitrogen-vacancy color centers optically detected magnetic resonance
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38