机构地区:[1]ICFO-Institut de Ciencies Fotoniques,The Barcelona Institute of Science and Technology,08860 Castelldefels(Barcelona),Spain [2]Ipsumio B.V.,High Tech Campus,5656 AE,Eindhoven,Netherlands [3]Department of Photonics Engineering,Technical University of Denmark,DK-2800 Kgs Lyngby,Denmark [4]Research Group Mechanical Process Engineering,Institute of Process Engineering and Environmental Technology,Technische Universitat Dresden,Munchner Platz 3,D-01062 Dresden,Germany [5]School of Chemical and Process Engineering,University of Leeds,Leeds LS29JT,UK [6]IRIS Technology Solutions,SL,08860 Castelldefels(Barcelona),Spain [7]ICREA-Institucio Catalana de Recerca i Estudis Avançats,08010 Barcelona,Spain
出 处:《Light(Science & Applications)》2020年第1期1809-1819,共11页光(科学与应用)(英文版)
基 金:funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No.637232(ProPAT project);financial support from the Spanish Ministry of Economy and Competitiveness through the‘Severo Ochoa’Programme for Centres of Excellence in R&D(SEV-2015-0522);from Fundacio Privada Cellex,and from Generalitat de Catalunya through the CERCA programme,from AGAUR 2017 SGR 1634;financial support from the Spanish Ministry of Economy and Competitiveness through the project OPTO-SCREEN(TEC2016-75080-R);funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 665884.
摘 要:Light scattering is a fundamental property that can be exploited to create essential devices such as particle analysers.The most common particle size analyser relies on measuring the angle-dependent diffracted light from a sample illuminated by a laser beam.Compared to other non-light-based counterparts,such a laser diffraction scheme offers precision,but it does so at the expense of size,complexity and cost.In this paper,we introduce the concept of a new particle size analyser in a collimated beam configuration using a consumer electronic camera and machine learning.The key novelty is a small form factor angular spatial filter that allows for the collection of light scattered by the particles up to predefined discrete angles.The filter is combined with a light-emitting diode and a complementary metal-oxide-semiconductor image sensor array to acquire angularly resolved scattering images.From these images,a machine learning model predicts the volume median diameter of the particles.To validate the proposed device,glass beads with diameters ranging from 13 to 125μm were measured in suspension at several concentrations.We were able to correct for multiple scattering effects and predict the particle size with mean absolute percentage errors of 5.09% and 2.5% for the cases without and with concentration as an input parameter,respectively.When only spherical particles were analysed,the former error was significantly reduced(0.72%).Given that it is compact(on the order of ten cm)and built with low-cost consumer electronics,the newly designed particle size analyser has significant potential for use outside a standard laboratory,for example,in online and in-line industrial process monitoring.
分 类 号:O57[理学—粒子物理与原子核物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...