一种基于元路径的社交事件推荐方法  

Meta-path based social event recommendation

在线阅读下载全文

作  者:冯堂林 何亮[1] FENG Tanglin;HE Liang(School of Computer Science and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China)

机构地区:[1]西安交通大学计算机学院,陕西西安710049

出  处:《微电子学与计算机》2021年第8期73-79,共7页Microelectronics & Computer

基  金:国家自然科学基金项目(11574120)。

摘  要:基于事件的社交网络为用户提供线上线下互动模式的社交服务,用户在线上组织事件,线下参与事件.以往的研究基于因素或基于图实现社交事件推荐,难以充分挖掘社交网络中的语义信息.为解决该问题,提出了基于元路径的社交事件推荐方法,元路径包含丰富的语义信息,是异质信息网络的重要特征.首先构建了一个异质社交网络,接下来利用元路径计算用户与事件之间的相关性矩阵,在此基础上,通过最优化问题求解元路径权重,最后将相关性矩阵和元路径权重线性组合实现面向用户的社交事件推荐.该算法在应用最为广泛的基于事件的社交网络平台--Meetup网站真实数据集上进行了实验,采用不同度量指标与其它推荐方法进行了对比,实验结果表明本算法优于其它对比方法.Event based social networks(EBSNs)provides users with online to offline social services.Users can organize events online and participate in them offline.Particularly,social event recommendation is a hot issue in this field.The existing studies have mainly focused on factors-based or graph-based social event recommendation,which can hardly exploit the semantic information in the social networks thoroughly.To address this problem,a meta-path based social event recommendation method is proposed.The meta-path contains rich semantic information,being an important feature of the heterogeneous information networks.Firstly,a heterogeneous network is constructed,and then various candidate meta-paths are utilized to calculate the correlation matrix between the users and events.On this basis,the weight of each meta-path is solved by optimization method.Accordingly,the social event recommendation is realized in terms of the linear combination of correlation matrix and meta-path weights.The algorithm is validated on the real dataset of Meetup,the most popular event-based social network platform.Meanwhile,various metrics are explored to compare the recommendation methods.The experimental results show that the proposed algorithm outperforms the comparative ones.

关 键 词:基于事件的社交网络 异质信息网络 元路径 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象