检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:游洪 米鸿燕[1] 李勇发 王志红 刘岚 熊鹏 YOU Hong;MI Hongyan;LI Yongfa;WANG Zhihong;LIU Lan;XIONG Peng(School of Land and Resources Engineering,Kunming University of Science and Technology,Kunmming 650093,China;Guizhou University of Engineering Science,Bijie,Guizhou 551700,China;Tonghai Real Estate Registration Center,Tonghai,Yunnan 652704,China)
机构地区:[1]昆明理工大学国土资源工程学院,昆明650093 [2]贵州工程应用技术学院,贵州毕节551700 [3]通海县不动产登记中心,云南通海652704
出 处:《测绘科学》2021年第7期67-75,共9页Science of Surveying and Mapping
基 金:国家自然科学基金项目(51574242);贵州省教育厅自然科学研究项目([2018]071,[2018]405)。
摘 要:针对盘营铁路专线、哈大铁路专线沿线沉降监测研究较少,采用InSAR技术获取了研究区地表形变信息,还对其进行了相关分析。用SBAS-InSAR对35景Sentinel-1A SAR数据进行处理,获取VV、VH极化下的年均沉降速率及沉降序列;以年均沉降速率为研究对象,进行沿线沉降特征分析及交叉验证;利用小波变换对沉降序列降噪处理,用改进BP神经网络对降噪后沉降序列预测分析。研究结果表明,研究区内高速铁路沿线共监测出6个明显沉降区域,最大沉降速率达50 mm/a;两种极化年均沉降速率具有较高的一致性,降噪处理后的沉降序列更加平滑;改进BP神经网络具有较高的收敛速度,其预测精度有较大提高。In view of the lack of research on settlement monitoring along Panying railway line and Hada railway line,this paper used InSAR technology to obtain the surface deformation information of the study area,and also carried on the correlation analysis.Firstly,35 scenes of Sentinel-1 A SAR data were processed by SBAS-InSAR to obtain the average annual settlement rate and settlement sequence under the polarization of VV and VH.Secondly,taking the average annual settlement rate as the research object,the settlement characteristics along the line were analyzed and cross verified.Finally,the wavelet transform was used to denoise the settlement sequence,and the improved BP neural network was used to predict and analyze the denoising settlement sequence.The research results showed that there were six obvious settlement areas along the high-speed railway in the study area,the maximum settlement rate was 50 mm/a.The average annual settlement rates of the two polarizations had high consistency,and the settlement sequence after noise reduction was smoother.The improved BP neural network had higher convergence speed,and its prediction accuracy was greatly improved.
关 键 词:INSAR 沉降序列 小波变换 BP神经网络预测
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.247.50