检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhaodong Hao Siqin Liu Lingfeng Hu Jisen Shi Jinhui Chen
出 处:《Horticulture Research》2020年第1期1955-1970,共16页园艺研究(英文)
基 金:supported by the Key Research and Development Plan of Jiangsu Province(BE2017376);the Foundation of Jiangsu Forestry Bureau(LYKJ[2017]42);the Qinglan Project of Jiangsu Province,and the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
摘 要:Liriodendron tulipifera,also known as tuliptree,is a popular ornamental horticultural plant with extraordinary tulipshaped flowers characterized by an orange band near their base.The mechanisms underlying petal band-specific pigmentation during L.tulipifera flower development are unclear.Here,we combined nontargeted and targeted metabolomics and transcriptomics to identify a pathway cascade leading to carotenoid biosynthesis that is specifically activated in the petal band.The comparative analysis of carotenoid metabolites between L.tulipifera and Liriodendron hybrids indicates thatγ-carotene,a rare carotene in plants,is the most likely orange pigment responsible for the coloration of the petal band.Phenotypic and transcriptomic analyses of developing petals reveal that the band area is first predefined by the loss of green color.Later,the band is maintained by locally activating and repressing carotenoid and chlorophyll biosynthesis genes,respectively.Two rate-limiting genes of carotene biosynthesis,carotenoid isomerase(CRTISO)and epsilon lycopene cyclase(ε-LCY),encode the core enzymes responsible for petal band-specific orange pigmentation in L.tulipifera.In particular,a putative additionalε-LCY copy specific to L.tulipifera may contribute to the distinct petal coloration pattern,compared with L.chinense.Taken together,our work provides a first glimpse of the metabolome and transcriptome dynamics in tuliptree flower coloration and provides a valuable resource for flower breeding or metabolic engineering as well as for understanding flower evolution in an early woody angiosperm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.149