基于随机森林算法的石油钻采装备外部故障自动监测方法  被引量:2

Automatic Monitoring Method for External Faults of Oil Drilling and Production Equipment Based on Machine Forest Algorithm

在线阅读下载全文

作  者:雷彪 陈江 侯林 LEI Biao;CHEN Jiang;HOU Lin(COSL Oilfield Chemicals Division Mexico Operation Company,Ciudad Del Carmen 24129 Mexico;COSL Oilfield Chemicals Division,Yanjiao 065200 China)

机构地区:[1]中海油服油化事业部墨西哥作业公司,墨西哥卡门城24129 [2]中海油服油化事业部,河北燕郊065200

出  处:《自动化技术与应用》2021年第7期125-128,155,共5页Techniques of Automation and Applications

摘  要:为提高石油钻采装备外部故障检测能力,提出基于随机森林算法的监测方法。构建大数据采集模型,以石油钻采装备的异常振动数据为研究对象,进行故障特征提取和信息融合,构建故障工况下的信息融合和特征聚类模型,通过模糊C均值聚类进行故障特征的量化分解和分类识别,在随机森林学习算法下实现对故障检测和诊断的自适应寻优。仿真结果表明,采用该方法进行故障检测,可有效提高故障的自动监测能力,且准确性较高,实时性较好。In order to improve the ability of oil drilling equipment external fault detection,a monitoring method based on random forest algorithm is proposed.Based on the abnormal vibration data of oil drilling and production equipment,the big data acquisition model is constructed,and the fault feature extraction and information fusion are carried out.The information fusion and feature clustering model under fault conditions are constructed.The fault features are quantitatively decomposed and classified by fuzzy c-means clustering,and the adaptive optimization of fault detection and diagnosis is realized under the random forest learning algorithm.The simulation results show that the method can effectively improve the ability of automatic fault monitoring,with high accuracy and good real-time performance.

关 键 词:随机森林算法 石油钻采装备 外部故障 自动监测 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象