检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵婧媛[1] 张志伟[1] ZHAO Jing-yuan;ZHANG Zhi-wei(Beijing Aeronautical Technology Research Center,Beijing 100000,China)
出 处:《航空计算技术》2021年第4期76-80,共5页Aeronautical Computing Technique
摘 要:针对SAR图像中存在的相干斑噪声影响目标识别性能的问题,设计了基于卷积自编码网络的相干斑噪声抑制模型,利用多层卷积自动编码器挖掘SAR图像潜在的空间特征,并使用混合正则约束优化网络训练过程提高网络泛化性能。通过仿真数据和真实数据两部分实验,用峰值信噪比、结构相似性以及等效视数作为算法性能评价指标,并与SAR-BM3D、PPB、ID-CNN进行对比,结果表明,网络能够有效地抑制SAR图像中的相干斑噪声,且对不同水平的噪声有较强的鲁棒性。A SAR image despeckling method based on convolutional auto-encoder network:aiming at the problem that speckle noise in SAR image affects the performance of target recognition,a despeckling model based on convolutional auto-encoder network is designed.The potential spatial characteristics of SAR image are mined by multi-layer convolutional auto-encoder,and the training process of the network is optimized by using mixed regularization constraints to improve network generalization performance.Through simulation data and real data two part experiments,peak signal to noise ratio,structural similarity,and equivalent number of looks are used as performance evaluation indexes,and compared with SAR-BM3D,PPB,and ID-CNN.The results show that the network can effectively suppress speckle noise in SAR image,and has strong robustness to different levels of noise.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.200.70