检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHOU Ji-Lin Bam-Bi HU SUN Yi-Sui 周济林;胡斑比;孙义燧(Department of Astronomy and Centre of Astronomy and Astrophysics in Eastern China,Nanjing University,Nanjing 210093;Department of Physics and Centre for Nonlinear Studies,Hong Kong Baptist University,Hong Kong;Department of Physics,University of Houston,Houston TX 77204 USA)
机构地区:[1]Department of Astronomy and Centre of Astronomy and Astrophysics in Eastern China,Nanjing University,Nanjing 210093 [2]Department of Physics and Centre for Nonlinear Studies,Hong Kong Baptist University,Hong Kong [3]Department of Physics,University of Houston,Houston TX 77204 USA
出 处:《Chinese Physics Letters》2001年第6期734-736,共3页中国物理快报(英文版)
基 金:Supported by Hong Kong Baptist University Faculty Research Grants,Hong Kong Grant Council Grants;the National Natural Science Foundation of China under Grant Nos.19903001 and 19633010;the Special Funds for Major State Basic Research Projects.
摘 要:With a four-dimensional symplectic map we study numerically the break-up of three-frequency Kolmogorov-Arnold-Moser(KAM)tori.The locations and stabilities of a sequence of periodic orbits,whose winding numbers approach the irrational winding number of the KAM torus,are examined.The break-up of quadratic frequency tori is characterized as the exponential growth of the residue means of the convergent periodic orbits.Critical parameters of the break-up of tori with different winding numbers are calculated,which shows that the spiral mean torus is the most robust one in our model.
关 键 词:KAM PERIODIC CONVERGENT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.153