Single-Site Indoor Fingerprint Localization Based on MIMO-CSI  

在线阅读下载全文

作  者:Jiancun Fan Jianxiong Zhang Xiaoyuan Dou 

机构地区:[1]School of Information and Communication Engineering,Xi’an Jiaotong University,Xi’an,Shaanxi 710049,China

出  处:《China Communications》2021年第8期199-208,共10页中国通信(英文版)

基  金:the National Natural Science Foundation of China under Grants No.61671367;the Key Research and Development Plan of Shaanxi Province under Grant No.2018GY-003;the Research Foundation of Science and Technology on Communication Networks Laboratory;the Fundamental Research Funds for the Central Universities.

摘  要:In order to achieve higher accuracy and lower cost of indoor localization,we propose a positioning method using multiple input and multiple output(MIMO)channel state information(CSI)as a fingerprint.The method can be divided into three stages,feature extraction,offline training and online localization.In the feature extraction,the segmented average and principal component analysis(PCA)are used to reduce the data dimension and decrease system complexity.In the offline training,the deep neural network(NN)model is trained to implement the position classification.In the online localization,the data are input into the trained NN model first,and then its output is further processed by weighted k-nearest neighbor(WKNN)technology to estimate the position.Experimental results show that the proposed method can significantly reduce the positioning error compared to other methods and the average error is 1.39m in a complex indoor environment.

关 键 词:electronics and communication engineering indoor positioning channel state information neural network PCA WKNN 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象