Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa-Holm and Hunter-Saxton Systems  

在线阅读下载全文

作  者:YAN Lu SONG Jun-Feng QU Chang-Zheng 闫璐;宋军锋;屈长征(Department of Mathematics,Northwest University,Xi’an 710069;College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062)

机构地区:[1]Department of Mathematics,Northwest University,Xi’an 710069 [2]College of Mathematics and Information Science,Shaanxi Normal University,Xi’an 710062

出  处:《Chinese Physics Letters》2011年第5期12-15,共4页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China for Distinguished Young Scholars(No 10925104).

摘  要:We present the multi-component Hunter-Saxton andμ-Camassa-Holm systems.It is shown that the multicomponent Camassa-Holm,Hunter-Saxton andμ-Camassa-Holm systems are geometrically integrable,namely they describe pseudo-spherical surfaces.As a consequence,their infinite number of conservation laws can be directly constructed.For the three-component Camassa-Holm and Hunter-Saxton systems,their nonlocal symmetries depending on the pseudo-potentials are obtained.

关 键 词:INTEGRABLE infinite CONSEQUENCE 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象