机构地区:[1]State Key Laboratory of High Field Laser Physics and CAS Center for Excellence in Ultra-intense Laser Science,Shanghai Institute of Optics and Fine Mechanics(SIOM),Chinese Academy of Sciences(CAS),Shanghai 201800,China [2]State Key Laboratory of Advanced Optical Communication Systems and Networks,School of Physics and Astronomy,Shanghai Jiao Tong University,Shanghai 200240,China [3]University of Chinese Academy of Sciences,Beijing 100049,China [4]School of Physical Science and Technology,ShanghaiTech University,Shanghai 200031,China [5]Department of Physics,National University of Defense Technology,Changsha 410073,China [6]State Key Laboratory for Mesoscopic Physics,School of Physics,Peking University,Beijing 100871,China [7]Texas A&M University,College Station,TX 77843,USA [8]Shanghai Research Center for Quantum Sciences,Shanghai 201315,China [9]Jinan Institute of Quantum Technology,Jinan 250101,China [10]Collaborative Innovation Center of Light Manipulations and Applications,Shandong Normal University,Jinan 250358,China [11]Collaborative Innovation Center of Extreme Optics,Shanxi University,Taiyuan 030006,China
出 处:《Science Bulletin》2021年第15期1511-1517,M0003,共8页科学通报(英文版)
基 金:the National Natural Science Foundation of China(11822410,12034013,11734009,and 11974245);the National Key R&D Program of China(2017YFA0303701 and 2019YFA0705000);the Shanghai Municipal Science and Technology Major Project(2019SHZDZX01);the Program of Shanghai Academic Research Leader(20XD1424200);the Natural Science Foundation of Shanghai(19ZR1475700);the Strategic Priority Research Program of Chinese Academy of Sciences(XDB16030300);the Key Research Program of Frontier Sciences of Chinese Academy of Sciences(QYZDJ-SSW-SLH010);the Youth Innovation Promotion Association of Chinese Academy of Sciences(2018284);NSF(ECCS-1509268,and CMMI-1826078);AFOSR(FA9550-20-1-0366);partially supported by the Fundamental Research Funds for the Central Universities;the support from the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning;the support from Shandong Quancheng Scholarship(00242019024)。
摘 要:Quantum coherence in quantum optics is an essential part of optical information processing and light manipulation.Alkali metal vapors,despite the numerous shortcomings,are traditionally used in quantum optics as a working medium due to convenient near-infrared excitation,strong dipole transitions and long-lived coherence.Here,we proposed and experimentally demonstrated photon retention and subsequent re-emittance with the quantum coherence in a system of coherently excited molecular nitrogen ions(N_(2)^(+))which are produced using a strong 800 nm femtosecond laser pulse.Such photon retention,facilitated by quantum coherence,keeps releasing directly-unmeasurable coherent photons for tens of picoseconds,but is able to be read out by a time-delayed femtosecond pulse centered at 1580 nm via two-photon resonant absorption,resulting in a strong radiation at 329.3 nm.We reveal a pivotal role of the excited-state population to transmit such extremely weak re-emitted photons in this system.This new finding unveils the nature of the coherent quantum control in N_(2)^(+)for the potential platform for optical information storage in the remote atmosphere,and facilitates further exploration of fundamental interactions in the quantum optical platform with strong-field ionized molecules.在量子光学中,量子相干性是光信息处理和光场调控的核心.碱金属蒸汽,虽然存在很多缺点,但是由于其具有易激发、偶极跃迁强和相干时间长的优点被广泛用于量子光学研究中.本文提出并实验上展示了800 nm飞秒激光相干激发的N_(2)^(+)中的光子存留现象.由于量子相干性的存在,存留在系统中的光子将在飞秒激光离开后的几十皮秒时间内持续再辐射.由于再辐射的光子较弱,难以直接测量.本文提出通过延时注入一束1580 nm的飞秒激光读取存留光子的方案.其核心思想是借助延时注入的激光与存留光子的双光子吸收,进一步激发N_(2)^(+)产生强的329.3 nm辐射.研究者也表明了N_(2)^(+)激发态布居对于信号读取的重要作用.这一新发现揭示了N_(2)^(+)中量子相干调控的物理机制,打开了在远程大气中进行光学信息存储的前景.此外,以强场电离产生的分子离子为量子系统,有利于进一步探索光与物质相互作用的基本过程.
关 键 词:Quantum coherence Photon retention Coherent quantum control Strong-field ionized molecules
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...