Dynamical Influence of Nodes Revisited: A Markov Chain Analysis of Epidemic Process on Networks  

在线阅读下载全文

作  者:LI Ping ZHANG Jie XU Xiao-Ke SMALL Michael 李平;张捷;许小可;SMALL Michael(Center for Networked Systems,School of Computer Science,Southwest Petroleum University,Chengdu 610500;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500;Center for Computational Systems Biology,Fudan University,Shanghai 200433;Hong Kong Polytechnic University,Hung Hom,Kowloon,Hong Kong;School of Communication and Electronic Engineering,Qingdao Technological University,Qingdao 2665206;School of Mathematics and Statistics,University of Western Australia,Crawley,WA 6009,Australia)

机构地区:[1]Center for Networked Systems,School of Computer Science,Southwest Petroleum University,Chengdu 610500 [2]State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500 [3]Center for Computational Systems Biology,Fudan University,Shanghai 200433 [4]Hong Kong Polytechnic University,Hung Hom,Kowloon,Hong Kong [5]School of Communication and Electronic Engineering,Qingdao Technological University,Qingdao 2665206 [6]School of Mathematics and Statistics,University of Western Australia,Crawley,WA 6009,Australia

出  处:《Chinese Physics Letters》2012年第4期248-251,共4页中国物理快报(英文版)

基  金:Supported by the National Natural Science Foundation of China under Grant Nos 61104224,61004104 and 61104143;the PolyU Postdoctoral Fellowships Scheme(G-YX4A);the Research Grants Council of Hong Kong(BQ19H).

摘  要:We provide a theoretical analysis of node importance from the perspective of dynamical processes on networks.In particular,using Markov chain analysis of the susceptible-infected-susceptible (SIS) epidemic model on networks,we derive the node importance in terms of dynamical behaviors on network in a theoretical way.It is found that this quantity happens to be the eigenvector centrality under some conditions,which bridges the topological centrality measure of the nodes with the dynamical influence of the nodes for the dynamical process.We furthermore discuss the condition under which the eigenvector centrality is valid for dynamical phenomena on networks.

关 键 词:process DYNAMICAL EIGENVECTOR 

分 类 号:O57[理学—粒子物理与原子核物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象