检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:石雪松 李宪华[1] 孙青 宋韬[2] SHI Xuesong;LI Xianhua;SUN Qing;SONG Tao(School of Mechanical Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China;School of Mechatronic Engineering and Automation,Shanghai University,Shanghai 200444,China)
机构地区:[1]安徽理工大学机械工程学院,安徽淮南232001 [2]上海大学机电工程与自动化学院,上海200444
出 处:《计算机应用》2021年第8期2312-2317,共6页journal of Computer Applications
基 金:国家自然科学基金资助项目(61803251);安徽高校自然科学研究重点资助项目(KJ2016A200);安徽省科技重大专项(16030901012);上海市机器人研发与转化功能型平台开放课题(K2020468);安徽理工大学研究生创新基金资助项目(2019CX2037)。
摘 要:针对传统模糊C均值(FCM)聚类算法在处理噪声图像时易受到噪声影响的问题,提出了基于FCM的小波域特征增强的噪声图像分割方法。首先,将噪声图像进行二维小波分解;其次,对近似系数进行边缘增强,同时利用人工蜂群(ABC)优化算法对细节系数进行阈值处理,并将处理后的系数进行小波重构;最后,对重构后的图片使用FCM算法来进行图像分割。选取5幅典型的灰度图像,分别添加高斯噪声和椒盐噪声,使用多种方法进行分割,以分割后图像的峰值信噪比(PSNR)和误分率(ME)作为性能指标,实验结果表明,所提方法分割后的图片相较于传统FCM聚类算法分割方法和粒子群优化(PSO)分割方法分割后的图片在PSNR上最多分别有281%和54%的提升,在ME上最多分别有55%和41%的降低。可见所提出的分割方法较好地保留了图像边缘纹理信息,其抗噪性能与分割性能得到了提升。Aiming at the problem that traditional Fuzzy C-Means(FCM)clustering algorithm is easily affected by noise in processing noise images,a noise image segmentation method of wavelet domain feature enhancement based on FCM was proposed.Firstly,the noise image was decomposed by two-dimensional wavelet.Secondly,the approximate coefficient was enhanced at the edge,and Artificial Bee Colony(ABC)optimization algorithm was used to perform threshold processing to the detail coefficients,and then the wavelet reconstruction was carried out for the processed coefficients.Finally,the reconstructed image was segmented by FCM algorithm.Five typical grayscale images were selected,and were added with Gaussian noise and salt-and-pepper noise respectively.Various methods were used to segment them,and the Peak Signal-to-Noise Ratio(PSNR)and Misclassification Error(ME)of the segmented images were taken as performance indicators.Experimental results show that the PSNR of the images segmented by the proposed method is at most 281% and 54% higher than the PSNR of the images segmented by the traditional FCM clustering algorithm segmentation method and Particle Swarm Optimization(PSO)segmentation method respectively,and the segmented images of the proposed method has the ME at most 55%and 41%lower than those of the comparison methods respectively.It can be seen that the proposed segmentation method preserves the edge texture information well,and the anti-noise and segmentation performance of this method are improved.
关 键 词:模糊C均值 小波分解 人工蜂群 小波重构 峰值信噪比 误分率
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7