检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙潇 徐金东 SUN Xiao;XU Jindong(School of Computer and Control Engineering,Yantai University,Yantai Shandong 264005,China)
机构地区:[1]烟台大学计算机与控制工程学院,山东烟台264005
出 处:《计算机应用》2021年第8期2440-2444,共5页journal of Computer Applications
基 金:国家自然科学基金资助项目(62072391,62066013);山东省自然科学基金资助项目(ZR2019MF060);山东省高等教育科技重点项目(J18KZ016);烟台市重点研发计划项目(2018YT06000271)。
摘 要:针对图像训练对的去雾算法难以应对遥感图像中训练样本对不足,且模型泛化的问题,提出一种基于级联生成对抗网络(GAN)的遥感图像去雾方法。为解决成对遥感数据集的缺失,提出了学习雾生成的U-Net GAN(UGAN)和学习去雾的像素注意GAN(PAGAN)。所提方法通过UGAN学习如何使用未配对的清晰遥感图像和带雾遥感图像集在保留遥感图像细节的同时对无雾图像进行加雾处理,然后引导PAGAN学习如何正确地对此类图像进行去雾。为了减少生成的带雾遥感图像和去雾后遥感图像之间的差异,在PAGAN中加入自我注意机制,用生成器从低分辨率图像中所有位置的细节线索生成高分辨率细节特征,用判别器检查图像远端部分的细节特征是否彼此一致。与特征融合注意网络(FFANet)、门控上下文聚合网络(GCANet)和暗通道先验(DCP)等去雾方法相比,级联GAN方法无需大量成对数据来反复训练网络。实验结果表明该方法能够有效地去除雾和薄云,在目视效果和定量指标上均优于对比方法。Dehazing algorithms based on image training pairs are difficult to deal with the problems of insufficient training sample pairs in remote sensing images,and have the model with weak generalization ability,therefore,a remote sensing image dehazing method based on cascaded Generative Adversarial Network(GAN)was proposed.In order to solve the missing of paired remote sensing datasets,U-Net GAN(UGAN)learning haze generation and Pixel Attention GAN(PAGAN)learning dehazing were proposed.In the proposed method,UGAN was used to learn how to add haze to the hazefree remote sensing images with the details of the images retained by using unpaired clear and haze image sets,and then was used to guide the PAGAN to learn how to correctly dehazing such images.To reduce the discrepancy between the synthetic haze remote sensing images and the dehazing remote sensing images,the self-attention mechanism was added to PAGAN.By the generator,the high-resolution detail features were generated by using cues from all feature locations in the low-resolution image.By the discriminator,the detail features in distant parts of the images were checked whether they are consistent with each other.Compared with the dehazing methods such as Feature Fusion Attention Network(FFANet),Gated Context Aggregation Network(GCANet)and Dark Channel Prior(DCP),this cascaded GAN method does not require a large number of paired data to train the network repeatedly.Experimental results show this method can remove haze and thin cloud effectively,and is better than the comparison methods on both visual effect and quantitative indices.
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7