检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田川[1] 冯国会[1] 李帅 李环宇[1] TIAN Chuan;FENG Guohui;LI Shuai;LI Huanyu(School of Municipal and Environmental Engineering,Shenyang Jianzhu University,Shenyang,China,110168;Economic and Technological Research Institute of State Grid Liaoning Electric Power Co.Ltd.,Shenyang,China,110015)
机构地区:[1]沈阳建筑大学市政与环境工程学院,辽宁沈阳110168 [2]国网辽宁省电力有限公司经济技术研究院,辽宁沈阳110015
出 处:《沈阳建筑大学学报(自然科学版)》2021年第3期542-548,共7页Journal of Shenyang Jianzhu University:Natural Science
基 金:国家重点研发计划项目(2017YFB0604000)。
摘 要:目的为实现新区规划阶段区域建筑节能减排,对辽东湾新区区域建筑节能及CO_(2)减排潜力预测进行研究。方法采用情景分析方法,建立LEAP-Liaobin模型,在基准情景和区域能源规划情景中预测能源消费和CO_(2)排放。建立ARIMA(1,1,1)模型和Logistic模型并引入LEAP模型中的经济模块和人口模块。修正LEAP模型数据库,根据我国燃料热值计算基于燃料单位质量的碳排放质量系数。结果区域能源规划情景与基准情景相比,2030年一次能源消费减少3.5 PJ,2010至2030年累计减少67 PJ。2010至2030年CO_(2)排放总量下降7.17×10^(5) t,能耗和CO_(2)排放分别降低了79%和45%。结论在新区规划阶段对节能减排潜力进行准确预测能够有效实现区域建筑节能减排。修正模型提高了预测GDP、人口数量和碳排放量的准确性。The potential of regional building energy conservation and CO_(2)emission reduction in Liaobin coastal economic zone is studied.Based on scenario analysis method,LEAP-Liaobin model is established to predict energy consumption and CO_(2)emission in the baseline scenario and community energy planning scenario.ARIMA(1,1,1)model and Logistic model are built and introduced into the economic module and population module in LEAP model.In order to modify LEAP model database,carbon emission mass coefficient on unit mass of fuel is calculated according to calorific value of fuel in China.The results show that compared with the baseline scenario,in the community energy planning scenario primary energy consumption will be reduced by 3.5×106 PJ in 2030,and by 67×10^(7) PJ cumulatively from 2010 to 2030,and total CO_(2)emissions will be reduced by 7.17×10^(5) t.Energy consumption and CO_(2)emissions will be reduced by 79%and 45%,respectively.In conclusion,the application of LEAP model to regional building energy conservation and emission reduction is scientific and effective.The accuracy of future GDP,population and carbon emission data prediction of the modified model is improved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117