检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李锐洋 霍伟博 马巍[1] 程子扬 LI Ruiyang;HUO Weibo;MA Wei;CHENG Ziyang(Southwest China Research Institute of Electronic e quipment,Chengdu 610036,China;School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]中国电子科技集团公司第二十九研究所,四川成都610036 [2]电子科技大学信息与通信工程学院,四川成都611731
出 处:《系统工程与电子技术》2021年第9期2470-2475,共6页Systems Engineering and Electronics
基 金:国家自然科学基金(62001084)资助课题。
摘 要:在复合高斯杂波中检测目标信号,需要对杂波协方差矩阵进行估计,相应的检测性能与估计精度密切相关。利用服从逆高斯分布的纹理分量来对复合高斯杂波进行建模,可以更好地拟合高分辨杂波实测数据。本文给出了一种两步广义似然比检测器,先假设杂波协方差矩阵已知以获得检测统计量,再利用纹理分量的先验分布推导协方差矩阵的最大似然估计。同时,基于贝叶斯方法,假定纹理分量和协方差矩阵均为服从某种先验分布的随机量,推导了协方差矩阵的最大后验估计。仿真结果显示,基于知识的自适应检测技术由于引入了纹理分量和杂波的先验信息,其协方差矩阵的估计精度好于最大似然估计和样本估计方法,同时具有更好的检测性能。Todetect the target signal in composite Gaussian clutter,the clutter covariance matrix needs to be estimated.The corresponding detection performance is closely related to the estimation accuracy.Using the texture component obeying the inverse Gaussian distribution to model the composite Gaussian clutter can better fit the measured data of high-resolution clutter.In this paper,a two-step generalized likelihood ratiOdetector is proposed.Firstly,the clutter covariance matrix is assumed to be known to obtain the detection statistics,and then the maximum likelihood estimation of the covariance matrix is derived from the prior distribution of texture components.At the same time,based on Bayesian method,assuming that the texture component and covariance matrix are random quantities subject to a priori distribution,the maximum a posteriori estimation of covariance matrix is derived.Simulation results show that due to the introduction of prior information of texture components and clutter,the estimation accuracy of covariance matrix of knowledge-based adaptive detection technology is better than that of maximum likelihood estimation and sample estimation methods,and has better detection performance.
分 类 号:TN957.51[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28