基于共现分析的分类器链标签序列优化方法  被引量:3

Label order optimization method of classifier chains based on co-occurrence analysis

在线阅读下载全文

作  者:赖德迪 罗智徽 马应龙[1] LAI Dedi;LUO Zhihui;MA Yinglong(School of Control and Computer engineering,North China electric Power University,Beijing 102206,China)

机构地区:[1]华北电力大学控制与计算机工程学院,北京102206

出  处:《系统工程与电子技术》2021年第9期2526-2534,共9页Systems Engineering and Electronics

基  金:国家重点研发计划(2018YFC0831404,2018YFC0830605)资助课题.

摘  要:针对分类器链模型采用随机生成方式确定标签序列会极大影响分类器链性能的问题。通过共现分析技术深入挖掘标签间的潜在关系,提出一种基于贪心算法和n-gram模型的两种标签序列优化策略以提升分类器链模型性能。基于贪心算法的策略通过计算和排序标签之间共现率来生成优化的分类器链标签序列,而基于n-gram模型的策略则通过最大化标签之间条件概率来生成优化的分类器链标签序列。最后通过多个多标签基准数据集进行实验验证,实验结果表明,与当前流行的各种分类器链模型相比,所提的两种策略很有竞争力,可以明显提升多标签分类效果。Aiming at the problem that the performance of classification chain model will be greatly affected by randomly generated label sequence,a twOlabel sequence optimization strategies based on greedy algorithm and n-gram model is proposed to improve the performance of classification chain model through co-occurrence analysis technology.The strategy based on greedy algorithm generates the optimized classification chain labels sequence by calculating and sorting the co-occurrence rate between labels,while the strategy based on n-gram model generates the optimized classification chain labels sequence by maximizing the conditional probability between labels.Finally,experiments are carried out on multiple multi label benchmark datasets.The experimental results show that compared with the current popular classification chain models,the proposed two strategies are very competitive and can significantly improve the multi label classification effect.

关 键 词:多标签分类 分类器链 共现分析 N元文法 二元相关性 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象