基于KPLS鲁棒重构误差的高炉燃料比监测与异常识别  被引量:9

KPLS Robust Reconstruction Error Based Monitoring and Anomaly Identification of Fuel Ratio in Blast Furnace Ironmaking

在线阅读下载全文

作  者:周平 刘记平 梁梦圆 张瑞垚 ZHOU Ping;LIU Ji-Ping;LIANG Meng-Yuan;ZHANG Rui-Yao(State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819)

机构地区:[1]东北大学流程工业综合自动化国家重点实验室,沈阳110819

出  处:《自动化学报》2021年第7期1661-1671,共11页Acta Automatica Sinica

基  金:国家自然科学基金项目(61890934,61790572);辽宁省“兴辽英才计划”项目(XLYC1907132);中央高校基本科研业务费项目(N180802003);矿冶过程自动控制技术国家(北京市)重点实验室开放课题资助(BGRIMM-KZSKL-2017-04)。

摘  要:作为钢铁冶金制造的核心工序,高炉炼铁是典型的高能耗过程,其运行能耗约占钢铁总能耗的50%以上,其中,80%的能耗是焦炭和煤粉等燃料消耗.因此,对表征高炉燃料消耗的燃料比参数进行监测,并尽可能早地识别影响燃料比异常波动的关键因素,对于高炉炼铁过程的节能降耗具有重要意义.本文针对先验故障知识少的高炉燃料比监测与异常识别难题,提出一种基于核偏最小二乘(Kernel partial least squares,KPLS)鲁棒重构误差的故障识别方法.该方法首先建立过程变量与监测变量的KPLS监测模型,然后根据非线性映射空间的协方差矩阵和核空间Gram矩阵之间的关系,反向估计原始空间变量的正常估值.为了增强算法的鲁棒性,采用迭代去噪算法减少异常数据对原始空间正常估值的影响.通过利用原始空间正常估值和真实值来构造故障识别指标,并给出故障识别指标的控制限.基于实际工业数据的高炉数据实验表明所提方法不仅可以监测出正常工况下影响燃料比异常变化的潜在因素,还可识别出异常工况下影响燃料比异常变化的关键因素,具有很好的工程应用前景.As the core process of steel metallurgy manufacturing,blast furnace ironmaking is a typical process with high energy consumption,whose operating energy consumption accounts for more than 50%of the total energy consumption of steel,80%of which is fuel consumption such as coke and pulverized coal.Therefore,it is important for energy saving and consumption reduction of blast furnace ironmaking process to monitor the fuel ratio parameter which characterizes the fuel consumption to identify the key factors that affect the abnormal fluctuation of fuel ratio as early as possible.Aiming at the problem of monitoring and identification of blast furnace fuel ratio with little knowledge of prior faults,this paper proposes a new fault identification method based on robust reconstruction error of kernel partial least squares(KPLS).Firstly,the KPLS-based monitoring model of process variables and monitored variable is established.According to the relationship between the covariance matrix of nonlinear mapping space and the Gram matrix of kernel space,the normal estimation of the original space variables is estimated inversely.And the iterative denoising algorithm is used to reduce the influence of the anomaly data on the normal estimation of the original space.The fault identification index is constructed by using the normal estimation and real value of the original space,and the control limit of the fault identification index is given.The experimental results based on actual industrial data show that the proposed method can not only monitor the potential factors affecting the abnormal change of fuel ratio under normal working conditions,but also identify the key factors affecting the abnormal change of fuel ratio under abnormal working conditions,which has a good engineering application prospects.

关 键 词:核偏最小二乘 鲁棒重构 故障识别 高炉炼铁 燃料比 过程监测 

分 类 号:TF538.6[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象