检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李佳琳 王雅哲[1,2] 罗吕根 王瑜 LI Jialin;WANG Yazhe;LUO Lvgen;WANG Yu(Institute of Information Engineering,Chinese Academy of Sciences,Beijing 100093,China;School of Cyber Security,University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院信息工程研究所,北京100093 [2]中国科学院大学网络空间安全学院,北京100049
出 处:《信息安全学报》2021年第4期28-43,共16页Journal of Cyber Security
基 金:国家重点研发计划(No.2019YFB1706000)资助。
摘 要:随着对Android恶意软件检测精度和性能要求的提高,越来越多的Android恶意软件检测引擎使用人工智能算法。与此同时,攻击者开始尝试对Android恶意软件进行一定的修改,使得Android恶意软件可以在保留本身的功能的前提下绕过这些基于人工智能算法的检测。上述过程即是Android恶意软件检测领域的对抗攻击。本文梳理了目前存在的基于人工智能算法的Android恶意软件检测模型,概述了针对Android恶意软件检测模型的对抗攻击方法,并从特征和算法两方面总结了相应的增强模型安全性的防护手段,最后提出了Android恶意软件检测模型和对抗攻击的发展趋势,并分析了对抗攻击对Android恶意软件检测的影响。With the accuracy and performance demand for Android malware detection,more and more Android malware detection engines integrate artificial intelligence algorithms.At the same time,attackers have begun to try to modify An-droid malware to bypass these artificial intelligence based algorithm while preserving their own functionality.It’s called adversarial attack in the field of Android malware detection.This paper combs the existing Android malware detection model based on artificial intelligence algorithm,and summarizes the adversarial attack methods for Android malware de-tection model and the corresponding protection methods for enhancing model security from two aspects of features and algorithms.Finally,the development trend of Android malware detection model and confrontation attack is proposed,and the impact of adversarial attack on Android malware detection is analyzed.
分 类 号:TP309.5[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229