机构地区:[1]三峡大学水利与环境学院,宜昌443002 [2]水资源安全保障湖北省协同创新中心,武汉430072 [3]西北农林科技大学水利与建筑工程学院,杨凌712100
出 处:《农业工程学报》2021年第11期93-103,共11页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家自然科学基金项目(40701024)。
摘 要:融合地面实测、卫星遥感等信息的定量降水产品能为干旱监测提供时空分布式降水数据源。为评估定量降水产品在淮河流域的干旱监测潜力,该研究利用淮河流域27个气象站点实测降水数据,检验多源集成降水(Multi-Source Weighted-Ensemble Precipitation,MSWEP)产品、气候灾害组融合站点的红外降水(Climate Hazards Group Infrared Precipitation with Station,CHIRPS)产品、基于人工神经网络的遥感降水估计-气候数据记录(Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record,PERSIANN-CDR)产品共3种长期(>30 a)定量降水产品精度。并采用标准化降水指数(Standardized Precipitation Index,SPI)作为干旱指标,相关系数(Correlation Coefficient,r)、均方根误差(Root Mean Square Error,RMSE)、临界成功指数(Critical Success Index,CSI)、干旱等级监测准确率(Accuracy,ACC)作为评价指标,评估各定量降水产品在淮河流域的精度及干旱监测潜力。结果表明:1)3种产品降水数据均在整体上对实测降水量有所低估;MSWEP精度优于其他2种定量降水产品,该产品的月、季、年尺度累计降水估算精度指标r分别为0.96、0.97、0.92,RMSE分别为26.38、50.01、124.73 mm;CHIRPS与PERSIANN-CDR精度表现接近;2)MSWEP估算的极端短缺降水量精度最高,RMSE不足其他2种产品的50%;在降水极端短缺月,3种产品估算降水量相对实际降水量整体呈高估状态;3)MSWEP在干旱监测上的整体表现优于其他产品,基于MSWEP计算的月SPI、季SPI、年SPI指数的精度更高(r≥0.92,RMSE≤0.39),历史干旱月份识别(CSI≥0.89)及干旱等级监测(ACC≥80.3%)均更为准确;4)MSWEP对各级别旱情判定更为准确,并且对极端旱情的识别能力最强,各旱情等级下的ACC较CHIRPS和PERSIANN高;5)3种产品在淮河流域2000年典型干旱事件中均表现出了优秀的监测潜力,MSWEP产品更为准确地识别了2000年2—6月的典型�Accurate and high-resolution precipitation data will help in obtaining an accurate monitoring of drought development spatially and temporally.In such an occasion,the quantitative precipitation products bear the potential advantages of monitoring droughts continuously over a wide-span space coverage,compared to traditional ground-based meteorological data.Three quantitative precipitation products were selected in this study to access their accuracies and drought monitoring potentials in Huaihe River Basin for their suitability in calculating the Standardized Precipitation Index(SPI).They are Multi-Source Weighted-Ensemble Precipitation(MSWEP),Climate Hazards Group Infrared Precipitation with Station(CHIRPS)and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR).The precipitation data from 27 meteorological stations in Huaihe River Basin from 1983 to 2016 were collected to test the accuracy of monthly accumulative precipitation data of three quantitative precipitation products.The SPI was used as the drought indicator.The Correlation Coefficient(r),the Root Mean Square Error(RMSE),the Critical Success Index(CSI),and the drought level monitoring Accuracy(ACC)were used as evaluation indicators to evaluate the drought monitoring potential of the three quantitative precipitation products(MSWEP,CHIRPS and PERSIANN-CDR).The results showed that:1)All three quantitative precipitation products underestimated the actual precipitation both in monthly-,seasonal-,and annual-scale;The accuracy of MSWEP outperformed the other two products,in the sense that,the r values of MSWEP reached 0.92-0.97 and the RMSE values were 26.38-124.73 mm;The accuracies of CHIRPS with resolution of 0.05°×0.05°was similar to that of the resolution of 0.25°×0.25°;Also CHIRPS and PERSIANN-CDR had similar accuracy performances;2)For the estimation of extreme shortage of precipitation,the MSWEP also bears the highest accuracy compared to the other two products,in the sense tha
分 类 号:S127[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...