Self-lubrication of tribologically-induced oxidation during dry reciprocating sliding of aged Ti–Ni51.5 at% alloy  被引量:1

在线阅读下载全文

作  者:Rui YANG Wei MA Chunjian DUAN Song LI Tingmei WANG Qihua WANG 

机构地区:[1]State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China [2]Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

出  处:《Friction》2021年第5期1038-1049,共12页摩擦(英文版)

基  金:This work was supported by the National Natural Science Foundation of China(51673205);the Key Research Program of Frontier Science,Chinese Academy of Sciences(QYZDJ‐SSW‐SLH056);the National Basic Research Program of China(2015CB057502).

摘  要:The tribological behaviors of Ti–Ni51.5 at%alloy strengthened by finely dispersed Ni_(4)Ti_(3) particles in reciprocating sliding against GCr15,Al_(2)O_(3),and ZrO_(2) at room temperature were studied.Interestingly,the coefficient of friction(COF)suffered a sheer drop(from 0.9 to 0.2)when the aged alloy slid against GCr15 at a frequency of 20 Hz under a 20 N load without lubrication.However,severe‐mild wear transition disappeared when a solutionized alloy was used.Moreover,the COF stabilized at a relatively high level when Al_(2)O_(3) and ZrO_(2) were used as counterparts,although their wear mechanisms showed signs of oxidation.Scanning electron microscopy(SEM)and X‐ray element mappings of the wear scars of the counterparts clearly indicate that the formation of well‐distributed tribo‐layer and material transfer between the ball and disk are pivotal to the severe‐to‐mild wear transition in the aged Ti–Ni51.5 at%alloy/GCr15 friction pair.The higher microhardness and superelasticity of the aged alloy significantly accelerate the material transfer from GCr15 to the disk,forming a glazed protective tribo‐layer containing Fe‐rich oxides.

关 键 词:self‐lubrication tribologically‐induced oxidation Ti–Ni51.5 at%alloy dry reciprocating sliding COUNTERPARTS 

分 类 号:TG139.6[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象