检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Pengfei SHI Junhui SUN Yunhai LIU Bin ZHANG Junyan ZHANG Lei CHEN Linmao QIAN
机构地区:[1]Tribology Research Institute,State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,China [2]State Key Laboratory of Solid Lubrication,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China
出 处:《Friction》2021年第6期1464-1473,共10页摩擦(英文版)
基 金:The authors are grateful for the financial support from the National Natural Science Foundation of China(51875486 and 51991373);Sichuan Science and Technology Program(2019YFH0098).
摘 要:Diamond-like carbon(DLC)film has been developed as an extremely effective lubricant to reduce energy dissipation;however,most films should undergo running-in to achieve a super-low friction state.In this study,the running-in behaviors of an H–DLC/Al_(2)O_(3) pair were investigated through a controllable single-asperity contact study using an atomic force microscope.This study presents direct evidence that illustrates the role of transfer layer formation and oxide layer removal in the friction reduction during running-in.After 200 sliding cycles,a thin transfer layer was formed on the Al2O3 tip.Compared with a clean tip,this modified tip showed a significantly lower adhesion force and friction force on the original H–DLC film,which confirmed the contribution of the transfer layer formation in the friction reduction during running-in.It was also found that the friction coefficient of the H–DLC/Al_(2)O_(3) pair decreased linearly as the oxygen concentration of the H–DLC substrate surface decreased.This phenomenon can be explained by a change in the contact surface from an oxygen termination with strong hydrogen bond interactions to a hydrogen termination with weak van der Waals interactions.These results provide new insights that quantitatively reveal the running-in mechanism at the nanoscale,which may help with the design optimization of DLC films for different environmental applications.
关 键 词:hydrogenated diamond-like carbon(H–DLC)film RUNNING-IN NANOSCALE oxide film transfer layer
分 类 号:TB383.2[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46