检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,P.R.China [2]School of Mathematical Sciences,Capital Normal University,Beijing 100048,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2021年第8期1219-1228,共10页数学学报(英文版)
基 金:supported by Natural Science Foundation of Shandong Province(Grant No.ZR2020MA017);partially supported by NSFC(Grant No.11871045).
摘 要:We study the Knieper measures of the geodesic flows on non-compact rank 1 manifolds of non-positive curvature.We construct the Busemann density on the ideal boundary,and prove that if there is a Knieper measure on T^(1)M with finite total mass,then the Knieper measure is unique,up to a scalar multiple.Our result partially extends Paulin-Pollicott-Shapira’s work on the uniqueness of finite Gibbs measure of geodesic flows on negatively curved non-compact manifolds to non-compact manifolds of non-positive curvature.
关 键 词:Geodesic flows Patterson-Sullivan measure Knieper measure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249