Variational Gridded Graph Convolution Network for Node Classification  被引量:3

在线阅读下载全文

作  者:Xiaobin Hong Tong Zhang Zhen Cui Jian Yang 

机构地区:[1]Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education,School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

出  处:《IEEE/CAA Journal of Automatica Sinica》2021年第10期1697-1708,共12页自动化学报(英文版)

基  金:supported by the Natural Science Foundation of Jiangsu Province(BK20190019,BK20190452);the National Natural Science Foundation of China(62072244,61906094);the Natural Science Foundation of Shandong Province(ZR2020LZH008)。

摘  要:The existing graph convolution methods usually suffer high computational burdens,large memory requirements,and intractable batch-processing.In this paper,we propose a high-efficient variational gridded graph convolution network(VG-GCN)to encode non-regular graph data,which overcomes all these aforementioned problems.To capture graph topology structures efficiently,in the proposed framework,we propose a hierarchically-coarsened random walk(hcr-walk)by taking advantage of the classic random walk and node/edge encapsulation.The hcr-walk greatly mitigates the problem of exponentially explosive sampling times which occur in the classic version,while preserving graph structures well.To efficiently encode local hcr-walk around one reference node,we project hcrwalk into an ordered space to form image-like grid data,which favors those conventional convolution networks.Instead of the direct 2-D convolution filtering,a variational convolution block(VCB)is designed to model the distribution of the randomsampling hcr-walk inspired by the well-formulated variational inference.We experimentally validate the efficiency and effectiveness of our proposed VG-GCN,which has high computation speed,and the comparable or even better performance when compared with baseline GCNs.

关 键 词:Graph coarsening GRIDDING node classification random walk variational convolution 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象