基于雷达海杂波的蒸发波导GA-PSO算法  被引量:3

GA-PSO Algorithm for Evaporation Duct Based on Radar Sea Clutter

在线阅读下载全文

作  者:张瑜[1] 周文静 邢孟女 ZHANG Yu;ZHOU Wenjing;XING Mengnv(College of Electronic and Electrical Engineering,Henan Normal University,Xinxiang 453007,China)

机构地区:[1]河南师范大学物理与电子工程学院,河南新乡453007

出  处:《兵器装备工程学报》2021年第8期239-244,共6页Journal of Ordnance Equipment Engineering

基  金:国家自然科学基金项目(61077037);河南省科技攻关计划项目(172102210046)。

摘  要:针对目前利用雷达海杂波反演蒸发波导方法精度较低、特征参数代表性不强的现状,提出了一种基于遗传-粒子群(GA-PSO)的混合算法。通过改变多波段雷达的频率建立目标函数,然后改变天线高度获得准确度更高的海杂波特征信息,利用遗传-粒子群混合算法求解目标函数,获得高精度的蒸发波导特征参数。仿真实验证明:利用GA-PSO混合算法获得蒸发波导特征参数不仅精度高,而且具有较好的算法稳定性。该方法可直接应用到海岸、舰船上无线电系统中,进一步扩大雷达系统探测范围和增加通信系统的通信距离,增强国防实力。The measurement of evaporation duct over the sea surface and the accurate acquisition of parameters are the prerequisites for over-the-horizon detection of coastal and shipboard radio systems.In view of the low precision and low representations of characteristic parameters in the method of inversion of evaporation duct using radar sea clutter,a hybrid algorithm based on genetic-particle swarm optimization(GA-PSO)was proposed.The objective function was established by changing the frequency of the multi-band radar,and then the more accurate sea clutter characteristic information was obtained by changing the antenna height.The genetic-particle swarm hybrid algorithm was used to solve the objective function,and then the high-precision evaporation duct characteristic parameters were obtained.The simulation experiment proves that using the GA-PSO hybrid algorithm to obtain the characteristic parameters of the evaporation duct can not only further improve the accuracy,but also have better algorithm stability.This method can be directly applied to the coastal and shipboard radio systems to further expand the detection range of the radar system and increase the communication distance of the communication system,so as to enhance the national defense strength of our country.

关 键 词:雷达海杂波 蒸发波导 多目标函数 GA-PSO算法 特征信息 

分 类 号:TN011.3[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象