检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wenjie Xi Zhi-Hao Zhang Zheng-Cheng Gu Wei-Qiang Chen 奚文杰;张智浩;顾正澄;陈伟强(Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China;Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China;School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China;Department of Physics,The Chinese Uinversity of Hong Kong,Hong Kong,China)
机构地区:[1]Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices,Southern University of Science and Technology,Shenzhen 518055,China [2]Institute for Quantum Science and Engineering and Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China [3]School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China [4]Department of Physics,The Chinese Uinversity of Hong Kong,Hong Kong,China
出 处:《Science Bulletin》2021年第17期1731-1739,M0003,共10页科学通报(英文版)
基 金:supported by the National Key Research and Development Program of China (2016YFA0300300);the National Natural Science Foundation of China (NSFC;11861161001);NSFC/RGC Joint Research Scheme (N-CUHK427/18);the Science, Technology and Innovation Commission of Shenzhen Municipality (ZDSYS20190902092905285);Guangdong Basic and Applied Basic Research Foundation under Grant No. 2020B1515120100;Center for Computational Science and Engineering of Southern University of Science and Technology。
摘 要:Topological phases in non-Hermitian systems have become fascinating subjects recently.In this paper,we attempt to classify topological phases in 1D interacting non-Hermitian systems.We begin with the non-Hermitian generalization of the Su-Schrieffer-Heeger(SSH)model and discuss its many-body topological Berry phase,which is well defined for all interacting quasi-Hermitian systems(non-Hermitian systems that have real energy spectrum).We then demonstrate that the classification of topological phases for quasi-Hermitian systems is exactly the same as their Hermitian counterparts.Finally,we construct the fixed point partition function for generic 1D interacting non-Hermitian local systems and find that the fixed point partition function still has a one-to-one correspondence to their Hermitian counterparts.Thus,we conclude that the classification of topological phases for generic 1D interacting non-Hermitian systems is still exactly the same as Hermitian systems.近年来,非厄米系统中的拓扑相是一个重要的研究热点.本文尝试分类一维有相互作用非厄米系统中的拓扑相.首先,作者将SSH模型推广到了非厄米情形,并详细讨论该模型的拓扑多体贝里相位.在准厄米系统(能谱为实数的非厄米系统)中,多体贝里相位是具备良好定义的.之后,该工作展示对于准厄米系统,其拓扑分类与厄米情况是相同的.最后,对于一般性的一维有相互作用非厄米系统,该工作构造了它们的不动点配分函数,并且发现这些不动点配分函数仍然与厄米系统的不动点配分函数有着一一对应.因此,可以得出结论,即对于一般性的一维有相互作用非厄米系统,其拓扑分类与厄米情况是相同的.
关 键 词:Symmetry protected topological states Topological quantum field theory Non-Hermitian systems Strongly correlated systems
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.34.209