检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yue-ting Wang Xiao-ting Zhang Jian-bing Xu Yun Shen Cheng-ai Wang Fu-wei Li Ze-hua Zhang Jian Chen Ying-hua Ye Rui-qi Shen
机构地区:[1]Department of Applied Chemistry,School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing,210094,China [2]Anhui Xinhe Defense Equipment Technology Corporation Limited,Anhui,230000,China
出 处:《Defence Technology(防务技术)》2021年第4期1307-1312,共6页Defence Technology
摘 要:In this study,AleCuO nanocomposites were fabricated by sol-gel method.As a contrast,the thermite was prepared by physical mixing at the equivalence ratio of 0.5,1,2,respectively.The intermediates and samples as prepared were characterized by SEM and XRD.The exothermic properties of the two samples prepared at different equivalence ratios were tested and the reaction products were characterized by XRD.The SEM results show that the sample prepared by the sol-gel method demonstrates a micron-sized agglomerated sphere formed by a mutual wrapping of Al NPs and CuO NPs,and the particles are evenly distributed in the agglomerate.In addition,when the content of Al powder is seriously insufficient,the heat release of the sample prepared by physical mixing is 1.6 times that of by sol-gel method.With the increase of Al powder content,the exothermic properties of Al/CuO NPs prepared by sol-gel method began to increase significantly compared with physical mixing and the difference is 1.5 times when the equivalence ratio increases to 2.It can be concluded that the reason for this result may be attributed to the different mass transfer modes of components due to the different morphologies of samples.
关 键 词:Nanothermite Energetic materials SOL-GEL CHARACTERIZATION
分 类 号:TQ560.1[化学工程—炸药化工] TB333[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.9