Research on fuze microswitch based on corona discharge effect  

在线阅读下载全文

作  者:Wen-zhong Lou Heng-zhen Feng Jin-kui Wang Yi Sun Yue-cen Zhao 

机构地区:[1]The School of Mechatronical Engineering,Beijing Institute of Technology,100081,Beijing,China

出  处:《Defence Technology(防务技术)》2021年第4期1453-1460,共8页Defence Technology

摘  要:Abnormal voltages such as electrostatic,constant current,and strong electromagnetic signals can erroneously trigger operation of MEMS pyrotechnics and control systems in a fuze,which may result in casualties.This study designs a solid-state micro-scale switch by combining the corona gas discharge theory of asymmetric electric fields and Peek’s Law.The MEMS switch can be transferred from“off”to“on”through the gas breakdown between the corona electrodes.In the model,one of the two electrodes is spherical and the other flat,so a non-uniform electric field is formed around the electrodes.The theoretical work is as follows.First,the relation among the radius of curvature of the spherical electrode,the discharge gap,and the air breakdown voltage is obtained;to meet the low voltage(30-60 V)required to drive the MEMS switch,the radius of curvature of the spherical electrode needs to be 10 e50 mm and the discharge gap between the two electrodes needs to be 9e11 mm.Second,the optimal ratioεis introduced to parameterize the model.Finally,the corona discharge structural parameters are determined by comparing the theoretical and electric field simulation results.The switch is then fabricated via MEMS processing.A hardware test platform is built and the performing chip tested.It is found that when the electrode gap is 9 mm,the electrostatic voltage is at least 37.3 V,with an error of 2.6%between the actual and theoretical air breakdown voltages.When the electrode gap is 11 mm,the electrostatic voltage is at least 42.3 V,with an error of 10.5%between the actual and theoretical air breakdown voltages.Both cases meet the design requirements.

关 键 词:Corona discharge Peek’s law Optimal ratioε MEMS switch 

分 类 号:TJ430.1[兵器科学与技术—火炮、自动武器与弹药工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象