检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李皓晨 齐滢滢 张翀 韩文菊 沈铁峰[2] 李德强[2] 关鹏 黄德生 LI Hao-chen;QI Ying-ying;ZHANG Chong;HAN Wen-ju;SHEN Tie-feng;LI De-qiang;GUAN Peng;HUANG De-sheng(Departnnent of Epidemidogy,School of Public Health,China Medical University,Shenyang,Liaoning 110122,China;Huludao Center for Disease Control and Prevention,Huludao,Liaoning 125000,China;School of Fundamental Sciences,China Medical University,Shenyang,Liaoning 110122,China)
机构地区:[1]中国医科大学公共卫生学院流行病学教研室,辽宁沈阳110122 [2]葫芦岛市疾病预防控制中心,辽宁葫芦岛125000 [3]中国医科大学公共基础学院数学教研室,辽宁沈阳110122
出 处:《中国媒介生物学及控制杂志》2021年第4期475-480,共6页Chinese Journal of Vector Biology and Control
基 金:国家自然科学基金(71974199);中国医科大学新冠肺炎疫情防控相关科研攻关基金资助项目(医大科发〔2020〕12号)。
摘 要:目的利用贝叶斯网络研究辽宁省葫芦岛市肾综合征出血热(HFRS)的影响因素并构建发病率预测模型。方法收集葫芦岛市2008年1-10月HFRS监测点的发病数据、宿主疫情数据及气象数据,采用禁忌搜索算法对贝叶斯网络进行结构学习,采用最大似然估计对贝叶斯网络进行参数学习。结果葫芦岛市HFRS发病与鼠密度、当月的平均风速和日照时数、滞后1个月的平均最高气温、相对湿度和归一化植被指数、滞后2个月的平均气温、平均最低气温、平均气压和降水量在0.01水平上相关,相关系数分别为0.691、0.689、0.345、-0.635、-0.631、-0.674、-0.714、-0.746、0.650和-0.643。利用气象和宿主资料对HFRS发病率进行预测时,贝叶斯网络模型的预测准确率为85.00%(17/20),精确率为83.33%(10/12),受试者工作特征曲线下面积为0.919。结论基于贝叶斯网络构建的发病率预测模型对葫芦岛市HFRS的预测准确率较高,对HFRS的防控有一定的参考价值。Objective To study the influencing factors for hemorrhagic fever with renal syndrome(HFRS)in Huludao,Liaoning province,China and to construct an incidence prediction model using a Bayesian network.Methods Data about incidence,host,and meteorological conditions of HFRS were collected at surveillance sites in Huludao from January 2008 to October 2018.The tabu search algorithm was used to learn the structure of the Bayesian network,and maximum likelihood estimation was applied to estimate Bayesian network parameters.Results At the 0.01 level,factors associated with the incidence of HFRS in Huludao included:rodent density;the average wind speed and sunshine hours in the contemporaneous month;the average maximum temperature,relative humidity,and normalized difference vegetation index with a one-month lag;and the average temperature,average minimum temperature,average atmospheric pressure,and precipitation with a two-months lag.The correlation coefficients were 0.691,0.689,0.345,-0.635,-0.631,-0.674,-0.714,-0.746,0.650,and-0.643,respectively.When using meteorological and host data to predict the incidence of HFRS,the accuracy of the Bayesian network model was 85.00%(17/20),the precision was 83.33%(10/12),and the area under the receiver operating characteristic curve was 0.919.Conclusion The Bayesian network-based incidence prediction model shows a relatively high prediction accuracy for HFRS in Huludao,providing a certain reference for HFRS prevention and control.
分 类 号:R373.2[医药卫生—病原生物学] O212.8[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229