检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘硕 张霜 崔铁军[2] LIU Shuo;ZHANG Shuang;CUI Tie-jun(School of Physics and Astronomy,University of Birmingham,Birmingham B152TT,United Kingdom;State Key Laboratory of Millimeter Waves,Southeast University,Nanjing 210096,China;Department of Physics,The University of Hong Kong,Pokfulam road 999077,Hong Kong,China)
机构地区:[1]英国伯明翰大学天文与物理学院,英国伯明翰B152TT [2]东南大学毫米波国家重点实验室,江苏南京210096 [3]香港大学物理系,中国香港999077
出 处:《中国光学》2021年第4期736-753,共18页Chinese Optics
基 金:欧盟地平线计划2020玛丽居里学者项目(No.833797);英国皇家学会Wolfson基金(No.734578,D-SPA,648783,Topological);国家重点研发计划(No.2017YFA0700201,No.2017YFA0700202,No.2017YFA0700203);国家自然科学基金(No.61631007,No.61571117,No.61875133,No.11874269);高等学校学科创新引智计划(No.111-2-05)。
摘 要:在过去的十年里,材料的拓扑相变以及它们的奇异物理现象在固态电子学领域掀起了研究热潮。近些年来,人们开始在其他系统中重现和模拟电子体系中的各种拓扑现象,包括冷原子气体、离子阱、光子学、声子学、机械波和电路体系。在这些体系平台中,由电感电容所组成的拓扑电路因具有高度灵活的设计自由度、高性价比、易加工和易集成的独特优势而备受关注。除此之外,在拓扑电路中可以方便地设计具有任意长程耦合、非线性、非互易、增益等效应的拓扑模型,从而实现很多在电子体系和光学体系中难以实现的非线性、非阿贝尔和非厄米的拓扑相变材料。本文作为拓扑电路领域的第一篇综述,系统性地回顾了过去六年拓扑电路领域的主要进展,重点关注其理论建模、电路设计与实验测量,并对拓扑电路与电子和光学体系中的拓扑绝缘体着重进行讨论和区别。本综述涵盖了多种不同类型的拓扑电路,包括含有非平庸边界态、高阶拓扑角模式以及外尔粒子的厄米拓扑电路,拥有拓扑节线和节点态的高维拓扑电路,具有趋肤效应和由增益/衰减导致的非厄米拓扑电路,自感应拓扑边界态的非线性拓扑电路,以及具有非阿贝尔规范场效应的拓扑电路。Exploring topological phases of matter and their exotic physics appeared as a rapidly growing field of study in solid-state electron systems in the past decade.In recent years,there has been a trend on the emulation of topological insulators/semimetals in many other systems,including ultracold quantum gases,trapped ions,photonic,acoustic,mechanical,and electrical circuit systems.Among these platforms,topological circuits made of simple capacitive and inductive circuit elements emerged as a very competitive platform because of its highly controllable degrees of freedom,lowercost,easy implementation,and great flexibility for integration.Owing to the unique advantages of electrical circuits such as arbitrary engineering of long-range hopping,convenient realization of nonlinear,nonreciprocal,and gain effects,highly flexible measurement,many of the nonlinear,non-abelian,and non-Hermitian physics can be potentially realized and investigated using the electrical circuit platform.In this review,we provide the first short overview of the main achievements of topological circuits developed in the past six years,primarily focusing on their theoretical modeling,circuit construction,experimental characterization,and their distinction from their counterparts in quantum electronics and photonics.The scope of this review covers a wide variety of topological circuits,including Hermitian topological circuits hosting nontrivial edge state,higher-order corner state,Weyl particles;higher dimensional topological circuits exhibiting nodal link and nodal knot states;non-Hermitian topological circuits showing skin effects,gain and loss induced nontrivial edge state;self-induced topological edge state in nonlinear topological circuit;topological circuit having non-Abelian gauge potential.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.53.120