Local component based principal component analysis model for multimode process monitoring  被引量:5

在线阅读下载全文

作  者:Yuan Li Dongsheng Yang 

机构地区:[1]Department of Information Engineering,Shenyang University of Chemical Technology,Shenyang 110142,China

出  处:《Chinese Journal of Chemical Engineering》2021年第6期116-124,共9页中国化学工程学报(英文版)

基  金:National Natural Science Foundation of China(61673279)。

摘  要:For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.

关 键 词:Principal component analysis Finite Gaussian mixture model Process monitoring Tennessee Eastman(TE)process 

分 类 号:TQ02[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象