应用统计线性回归的系统误差最大似然配准  被引量:2

Maximum likelihood registration for systemic error based on statistical linear regression

在线阅读下载全文

作  者:李佳炜 江晶[2] 吴卫华[1] 郑玉军 LI Jiawei;JIANG Jing;WU Weihua;ZHENG Yujun(Early Warning Intelligence Department,Air Force Early Warning Academy,Wuhan 430019,China;Aerospace Early Warning Department,Air Force Early Warning Academy,Wuhan 430019,China;Unit 94710 of the PLA,Wuxi 214000,China)

机构地区:[1]空军预警学院预警情报系,湖北武汉430019 [2]空军预警学院空天预警系,湖北武汉430019 [3]中国人民解放军94710部队,江苏无锡214000

出  处:《西安电子科技大学学报》2021年第4期73-82,共10页Journal of Xidian University

基  金:国家自然科学基金(61601510)。

摘  要:针对协同多传感器系统探测目标过程中存在着非随机系统误差的问题,提出一种基于统计线性回归的最大似然配准算法。首先通过联合最大化目标状态和系统误差的似然函数,建立多传感器系统的配准方程;然后利用一组不完全相同的回归点处理非线性量测转换的线性化问题,通过统计线性回归,构建目标状态关于去偏量测的回归方程,并得到投影后目标状态的前二阶统计特性;最后利用似然最大化迭代求解配准方程,实现对系统误差和目标状态的联合估计。仿真结果表明,基于统计线性回归的最大似然配准算法能在各观测维度上实现多个传感器的配准,且相比经典最大似然配准算法具有更高的配准精度和相当的计算复杂度。Generally,there are non-random systemic errors in target detection with the cooperative multi-sensor system.In order to solve this problem,a maximum likelihood registration algorithm based on statistical linear regression(SLR-MLR)is presented.The registration equation for the multi-sensor system is established first by jointly maximizing the likelihood function of the target state and systemic error,on the basis of which the proposed algorithm utilizes a set of diverse regression points to handle the linearization problem of the nonlinear measurement transformation.The regression equation for the target state with respect to unbiased measurement is constructed through statistical linear regression,and then the first two statistical properties of the projected state can be obtained.Moreover,the algorithm uses the likelihood maximization iteration to seek the solution of the registration equation,thus achieving the joint estimation for the systemic error and target state.Simulation results show that the SLR-MLR can achieve the registration of multiple sensors in each observation dimension,and has a higher accuracy and near computational complexity compared with the classical MLR.

关 键 词:协同多传感器系统 系统误差 统计线性回归 最大似然配准 

分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象