检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴永辉 张东东[1] 陈静月 郑玲[2] WU Yonghui;ZHANG Dongdong;CHEN Jingyue;ZHENG Ling(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China;College of Mechanical and Vehicle Engineering,Chongqing University,Chongqing 400044,China)
机构地区:[1]上海理工大学机械工程学院,上海200093 [2]重庆大学机械与运载工程学院,重庆400044
出 处:《上海理工大学学报》2021年第4期349-359,共11页Journal of University of Shanghai For Science and Technology
基 金:上海市青年科技英才扬帆计划(18YF1418500)。
摘 要:约束阻尼(CLD)结构拓扑优化是轻量化设计下实现振动与噪声控制的有效手段。结合约束阻尼结构的有限元模型,以前两阶模态损耗因子及其加权最大化为目标函数,以参数化水平集函数的扩展系数为设计变量,以约束阻尼材料用量为约束条件,建立了基于参数化水平集法(PLSM)的拓扑优化模型。基于伴随向量法推导了目标函数对设计变量的灵敏度,采用优化准则法更新设计变量。算例结果表明:基于参数化水平集法对约束层阻尼结构进行拓扑优化是可行有效的,且以基板结构应变能分布构建初始构型可提高优化效率。此外进一步讨论了在附加质量保持不变的条件下,约束层材料和阻尼材料厚度变化对约束阻尼材料模态损耗因子和最优构型的影响规律。Topology optimization of constrained layer damping(CLD)structure is an effective means to control vibration and noise under lightweight design.Combined with the finite element model of constrained layer damping structure,the first and second modal loss factor and its weighted value are defined as the objective functions.The expansion coefficients of the parametric level set function are chosen as the design variables,and the amount of CLD material is employed as the constraint condition.A topology optimization model based on parametric level set method(PLSM)is established.The sensitivity of objective function with respect to design variables is derived based on adjoint vector method and the design variables are updated by using optimization criterion method.Numerical results show that it is feasible and effective for topology optimization of the constrained layer damping structure using parametric level set method.In addition,the optimization efficiency can be improved by the initial configuration based on the strain energy distribution of the substrate structure.Furthermore,considering the additional mass kept unchanged,the influence of the thicknesses of constrained layer material and damping material on the modal loss factor and optimal configurations for constrained damping material is discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7