检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李炳龙[1] 佟金龙 张宇 孙怡峰[1] 王清贤[1] 常朝稳[1] LI Binglong;TONG Jinlong;ZHANG Yu;SUN Yifeng;WANG Qingxian;CHANG Chaowen(College of Cryptographic Engineering,Information Engineering University,Zhengzhou 450001,China)
机构地区:[1]信息工程大学密码工程学院,河南郑州450001
出 处:《网络与信息安全学报》2021年第4期154-163,共10页Chinese Journal of Network and Information Security
基 金:国家自然科学基金(60903220)。
摘 要:针对数字犯罪事件调查,在复杂、异构及底层的海量证据数据中恶意代码片段识别难的问题,通过分析TensorFlow深度学习模型结构及其特性,提出一种基于TensorFlow的恶意代码片段检测算法框架;通过分析深度学习算法训练流程及其机制,提出一种基于反向梯度训练的算法;为解决不同设备、不同文件系统的证据源中恶意代码片段特征提取问题,提出一种基于存储介质底层的二进制特征预处理算法;为进行反向传播训练,设计并实现了一个代码片段数据集制作算法。实验结果表明,基于TensorFlow的恶意代码片段检测算法针对不同存储介质以及证据存储容器中恶意代码片段的自动取证检测,综合评价指标F1达到0.922,并且和CloudStrike、Comodo、FireEye等杀毒引擎相比,该算法在处理底层代码片段数据方面具有绝对优势。In order to auto detect the underlying malicious code fragments in complex,heterogeneous and massive evidence data about digital forensic investigation, a framework for malicious code fragment detecting algorithm based on TensorFlow was proposed by analyzing TensorFlow model and its characteristics. Back-propagation training algorithm was designed through the training progress of deep learning. The underlying binary feature pre-processing algorithm of malicious code fragment was discussed and proposed to address the problem about different devices and heterogeneous evidence sources from storage media and such as AFF forensic containers. An algorithm which used to generate data set about code fragments was designed and implemented. The experimental results show that the comprehensive evaluation index F1 of the method can reach 0.922, and compared with CloudStrike, Comodo, FireEye antivirus engines, the algorithm has obvious advantage in dealing with the underlying code fragment data from heterogeneous storage media.
关 键 词:自动取证 深度学习 全连接神经网络 恶意代码片段
分 类 号:TP309[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.71.235