检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐健[1,2] 黄雨馨 王唯一 杨婷婷 郭语凡[1] 刘政 Xu Jian;Huang Yuxin;Wang Weiyi;Yang Tingting;Guo Yufan;Liu Zheng(College of Information Management,Nanjing Agriculture University,Nanjing 210095,China;The Post-Doctoral Research Center of Agricultural&Forestry Economics and Management,Nanjing Agriculture University,Nanjing 210095,China)
机构地区:[1]南京农业大学信息管理学院,江苏南京210095 [2]南京农业大学经济管理学院农林经济管理博士后流动,江苏南京210095
出 处:《现代情报》2021年第9期167-176,共10页Journal of Modern Information
基 金:第68批中国博士后科学基金面上项目(项目编号:2020M681652);南京农业大学国家级SRT计划“学术观点标注平台构建与文本特征分析”(项目编号:202010307097066Z);南京农业大学中央高校基本科研业务费“面向典籍文本的触发动词语义体系构建研究”(项目编号:SKCX2020006)。
摘 要:[目的/意义]论证挖掘(Argument Mining)是人工智能、文本挖掘领域近几年较为火热的研究主题,是观点挖掘(Opinion Mining)最新的研究方向。论辩挖掘旨在对文本信息中的论辩成分与结构进行识别、提取与分析,相关工作有助于度量论辩性文本中蕴含的论点、论据及其间关系,实现对观点可信度的评估,是完成文本细粒度分析和深度理解的关键。[方法/过程]本文收集了2014—2020年Argument Minging Workshop上发表的121篇论文,梳理相关理论、方法和应用场景。[结果/结论]研究发现,当前论辩挖掘研究仍处于初级阶段,相关研究存在缺乏整体性、未建立统一的标注规范、研究深度不足的缺陷。未来应更注重应用研究、提升语料库构建质量、实现从论辩性信息的理解到论辩自动生成的过渡。[Purpose/Significance]Argument mining is the most promising research topic in the areas of artificial intelligence and text mining.It may be seen as the latest research direction of opinion mining and it aims to recognize,extract and analyze the argument components and the argument structure within the textual information.The technologies and methods of argument mining could help us to measure the claims and evidences which argumentative text carries,and to evaluate of the credibility of claims.Such works are also of fundamental importance to realize the fine-grained analysis and deep understanding of the text.[Methods/Process]In this paper,121 papers published were collected on argument mining workshop from 2014 to 2020,and were sorted out in terms of the relevant theories,methods and application scenarios.[Results/Conclusions]We find that the study of argumentation mining is still in the initial stage,and the overall researches are undermined by the shortage of holism,the absence of annotation standard,and the insufficiency of study depth.Therefore,more attention should be paid to the application research and the quality of the corpus construction in the future.Besides,it is necessarg to realize the leap from the understanding of argumentative information to the automatic generation of argumentation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222