检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵鹏 陆志[1] 蒋珍华[1] 曲晓萍[1] 吴亦农[1] ZHAO Peng;LU Zhi;JIANG Zhen-hua;QU Xiao-ping;WU Yi-nong(Shanghai Institute of Technical Physics,Chinese Academy of Sciences, Shanghai 200083, China;University of Chinese Academy of Sciences,Beijing 100049, China)
机构地区:[1]中国科学院上海技术物理研究所,上海200083 [2]中国科学院大学,北京100049
出 处:《红外》2021年第8期33-37,共5页Infrared
基 金:国家自然科学基金项目(51806231)。
摘 要:为了探索星载脉管制冷机相关参数对制冷性能的影响和提高制冷性能的一致性,建立了基于机器学习的随机森林回归(Random Forest Regression,RFR)模型,然后对制冷性能与各个自变量进行了回归预测。制冷性能预测的平均相对误差为5.62%,平均确定性系数为0.805。按照特征重要度从高到低排序,前两位分别为丝网填充率和磁感应强度,与实际的实验结果相符(丝网填充率和磁感应强度的实际输入功的变化值分别为6.11 Wac和3.52 Wac,远大于其他4个自变量)。研究结果表明,RFR具有较高的精确度和鲁棒性,为提高星载脉管制冷机性能的一致性提供了新的思路。In order to explore the influence of relevant parameters on the cooling performance of space-borne pulse tube cryocooler and improve the consistency of cooling performance,a random forest regression model based on machine learning is established to make regression prediction of the cooling performance and various independent variables.The average relative error of cooling performance prediction is 5.62%,and the average certainty coefficient is 0.805.In terms of the influence degree of the variables,the first and second feature are mesh filling rate and magnetic induction intensity,which are consistent with the actual experimental results(the actual input power changes of mesh filling rate and magnetic induction intensity are 6.11 Wac and 3.52 Wac,which are much larger than the other four independent variables).The results show that RFR has the high accuracy and robustness,which provides a new idea for the consistency improvement of the cooling performance of space-borne pulse tube cryocooler.
分 类 号:TK123[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117