检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈金鑫 沈文忠 CHEN Jinxin;SHEN Wenzhong(School of Electronic and Information Engineering,Shanghai University of Electric Power,Shanghai 201306,China)
机构地区:[1]上海电力大学电子与信息工程学院,上海201306
出 处:《计算机工程与应用》2021年第17期217-223,共7页Computer Engineering and Applications
摘 要:针对当前的人眼定位算法应对复杂环境的抗干扰能力不强、定位准确度较差以及无左右眼分类的问题,提出了一种基于轻量级网络的虹膜图像人眼定位及左右眼分类算法。利用YOLO算法结合高性能的轻量级网络模型设计EL-YOLO模型,损失函数引入广义交并比(GIoU),使得网络训练可以快速收敛,且定位精度高。在CASIA-IrisV4、MIR2016以及本实验室采集的数据集SEPAD_V1和SEPAD_V2上的实验结果表明,EL-YOLO模型较小,运行速度快,且拥有较高的定位及分类准确率,具有较强的泛化能力。In view of the current human eye localization algorithm to deal with the complex environment of the antiinterference ability is not strong,the positioning accuracy is poor and there is no left and right eye classification,an algorithm for human eye location and left and right eye classification of iris image based on lightweight network is proposed.The EL-YOLO model is designed by using YOLO algorithm combined with the high-performance lightweight network model.The Generalized Intersection-over-Union(GIoU)is introduced into the loss function,which enables the network training to converge quickly and achieve high positioning accuracy.The experimental results on the datasets CASIA-IrisV4,MIR2016,and the datasets SEPAD_V1 and SEPAD_V2 collected by our lab show that the EL-YOLO model is small,runs fast,has a high accuracy of positioning and classification,and has a strong generalization ability.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.124